50 research outputs found

    Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study

    Get PDF
    In recent years, advances in molecular biology and cancer research have led to the identification of sensitive and specific biomarkers that associate with various types of cancer. However, in vivo cancer detection methods with computed tomography, based on tracing and detection of these molecular cancer markers, are unavailable today. This paper demonstrates in vivo the feasibility of cancer diagnosis based on molecular markers rather than on anatomical structures, using clinical computed tomography. Anti-epidermal growth factor receptor conjugated gold nanoparticles (30 nm) were intravenously injected into nude mice implanted with human squamous cell carcinoma head and neck cancer. The results clearly demonstrate that a small tumor, which is currently undetectable through anatomical computed tomography, is enhanced and becomes clearly visible by the molecularly-targeted gold nanoparticles. It is further shown that active tumor targeting is more efficient and specific than passive targeting. This noninvasive and nonionizing molecular cancer imaging tool can facilitate early cancer detection and can provide researchers with a new technique to investigate in vivo the expression and activity of cancer-related biomarkers and molecular processes

    Initial Safety and Tumor Control Results From a "First-in-Human" Multicenter Prospective Trial Evaluating a Novel Alpha-Emitting Radionuclide for the Treatment of Locally Advanced Recurrent Squamous Cell Carcinomas of the Skin and Head and Neck.

    Get PDF
    Purpose Our purpose was to report the feasibility and safety of diffusing alpha-emitter radiation therapy (DaRT), which entails the interstitial implantation of a novel alpha-emitting brachytherapy source, for the treatment of locally advanced and recurrent squamous cancers of the skin and head and neck. Methods and Materials This prospective first-in-human, multicenter clinical study evaluated 31 lesions in 28 patients. The primary objective was to determine the feasibility and safety of this approach, and the secondary objectives were to evaluate the initial tumor response and local progression-free survival. Eligibility criteria included all patients with biopsy-proven squamous cancers of the skin and head and neck with either primary tumors or recurrent/previously treated disease by either surgery or prior external beam radiation therapy; 13 of 31 lesions (42%) had received prior radiation therapy. Toxicity was evaluated according to the Common Terminology Criteria for Adverse Events version 4.03. Tumor response was assessed at 30 to 45 days at a follow-up visit using the Response Evaluation Criteria in Solid Tumors, version 1.1. Median follow-up time was 6.7 months. Results Acute toxicity included mostly local pain and erythema at the implantation site followed by swelling and mild skin ulceration. For pain and grade 2 skin ulcerations, 90% of patients had resolution within 3 to 5 weeks. Complete response to the Ra-224 DaRT treatment was observed in 22 lesions (22/28; 78.6%); 6 lesions (6/28, 21.4%) manifested a partial response (>30% tumor reduction). Among the 22 lesions with a complete response, 5 (22%) developed a subsequent local relapse at the site of DaRT implantation at a median time of 4.9 months (range, 2.43-5.52 months). The 1-year local progression-free survival probability at the implanted site was 44% overall (confidence interval [CI], 20.3%-64.3%) and 60% (95% CI, 28.61%-81.35%) for complete responders. Overall survival rates at 12 months post-DaRT implantation were 75% (95% CI, 46.14%-89.99%) among all patients and 93% (95% CI, 59.08%-98.96%) among complete responders. Conclusions Alpha-emitter brachytherapy using DaRT achieved significant tumor responses without grade 3 or higher toxicities observed. Longer follow-up observations and larger studies are underway to validate these findings

    Heparanase contributes to pancreatic carcinoma progression through insulin-dependent glucose uptake

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive tumor, which is highly resistant to existing therapies and characterized by one of the lowest survival rates known for solid cancers. Among the reasons for this poor prognosis are unique pathophysiological features of PDAC, such as dense extracellular matrix [ECM] creating barriers to drug delivery, as well as systemically-deregulated glucose metabolism manifested by diabetic conditions (i.e., hyperinsulinemia/hyperglycemia) occurring in the majority of PDAC patients. Moreover, in addition to systemically deregulated glucose homeostasis, intracellular metabolic pathways in PDAC are rewired toward increased glucose uptake/anabolic metabolism by the tumor cells. While the role of oncogene-driven programs in governing these processes is actively studied, mechanisms linking metabolic dysregulation and ECM enzymatic remodeling to PDAC progression/therapy resistance are less appreciated. The aim of the current study was to investigate the action of heparanase (the predominant mammalian enzyme that degrades heparan sulfate glycosaminoglycan in the ECM), as a molecular link between the diabetic state and the intracellular metabolic rewiring in PDAC pathogenesis. Here we show that in PDAC elevated levels of heparanase, coupled with diabetic conditions typical for PDAC patients, promote growth and chemotherapy resistance of pancreatic carcinoma by favoring insulin receptor signaling and GLUT4-mediated glucose uptake into tumor cells. Collectively, our findings underscore previously unknown mechanism through which heparanase acts at the interface of systemic and intracellular metabolic alterations in PDAC and attest the enzyme as an important and potentially modifiable contributor to the chemo-resistance of pancreatic tumors

    Effect of Opioid Receptor Activation and Blockage on the Progression and Response to Treatment of Head and Neck Squamous Cell Carcinoma

    No full text
    Recent studies suggest that opioids have a role in the progression of HNSCC mediated by mu opioid receptors (MOR), however, the effects of their activation or blockage remains unclear. Expression of MOR-1 was explored in seven HNSCC cell lines using Western blotting (WB). XTT cell proliferation and cell migration assays were performed on four selected cell lines (Cal-33, FaDu, HSC-2, and HSC-3), treated with opiate receptor agonist (morphine), antagonist (naloxone), alone and combined with cisplatin. All four selected cell lines display an increased cell proliferation and upregulation of MOR-1 when exposed to morphine. Furthermore, morphine promotes cell migration, while naloxone inhibits it. The effects on cell signaling pathways were analyzed using WB, demonstrating morphine activation of AKT and S6, key proteins in the PI3K/AKT/mTOR axis. A significant synergistic cytotoxic effect between cisplatin and naloxone in all cell lines is observed. In vivo studies of nude mice harboring HSC3 tumor treated with naloxone demonstrate a decrease in tumor volume. The synergistic cytotoxic effect between cisplatin and naloxone is observed in the in vivo studies as well. Our findings suggest that opioids may increase HNSCC cell proliferation via the activation of the PI3K/Akt/mTOR signaling pathway. Moreover, MOR blockage may chemo-sensitize HNSCC to cisplatin
    corecore