63 research outputs found

    Ligand and redox - interactions of adrenaline with iron at physiological pH

    Get PDF
    Adrenaline (Adr) is catecholamine that is released by the sympathetic nervous system and adrenal medulla. It is involved in several physiological functions, including regulation of blood pressure, vasoconstriction, cardiac stimulation, and regulation of the blood glucose levels 1 . Transients of high levels of Adr in the bloodstream have been recognized for a long time as a cause of cardiovascular problems that develop under chronic exposure to psychosocial and physical stress 2,3. A number of studies have found a connection between the excess of Adr, cardiotoxic effects, and oxidative stress, that is irrespective of adrenergic receptors stimulation 2-4. The mechanism behind this involves Adr (coordinate and redox) interactions with iron, which are still not clear. Two main concepts have been proposed - Adr autooxidation and redox interactions with iron, the most abundant transition metal in human plasma 5 . Fe3+ is known to build complexes with catechols 6 , but data on Fe3+ coordinate interactions with Adr at physiological pH are missing. In addition to its (patho)physiological role, Adr is of interest from the aspect of development of catecholamine-rich biopolymers with adhesive properties and metelloorganic frameworks 7,8. The adhesion and other properties materials are based on the cross-linking via coordinate bonds with Fe3+ at pH > 7. Finally, ligands might dramatically alter the redox potential of Fe3+/Fe2+ couple 9 . It has been shown that specific ligands with high affinity for Fe3+, including some catechols, might promote the oxidation and increase the reactivity of Fe2+ with molecular oxygen 10. The aim of our study was to examine the nature of Adr interactions with Fe3+ and Fe2+: stoichiometry, sites of coordinate bonds formation and structure of complex(es), and redox activity, at pH 7.4 and different concentration ratios. The coordinate and redox interactions were investigated using UV/Vis spectrophotometry, low temperature EPR, Raman 143 spectroscopy, cyclic voltammetry, and oximetry. The stability of Adr in the studied reactions was monitored by HPLC. At pH 7.4, Adr forms complexes with Fe3+, in the 1:1, and 3:1 stoichiometry, depending on (high or low) Adr/Fe3+ concentration ratio. The high-spin Fe3+ 1:1 and 3:1 complexes show different symmetries, with the 3:1 complex displaying higher EPR spectral anisotropy. Raman spectroscopy showed that oxygen atoms on the catechol ring represent the sites of coordinate bond formation in the bidentate Adr-Fe3+ complex. The bonds appear to be stronger in the 1:1 complex, and not to share the same plane with the ring. On the other hand, Adr and Fe2+ build a complex that acts as a strong reducing agent. In the presence of O2, this leads to the production of H2O2, and to a facilitated formation of Adr/Fe3+ complexes. Adr is not oxidized in this process, i.e. iron is not an electron shuttle but electron donor. Catalyzed oxidation of Fe2+ in the presence of Adr represents a plausible chemical basis of stress-related damage of heart cells. In addition, our results imply that the application/pre-binding of Fe2+ followed by oxidation at pH > 7 might be a simple alternative strategy for promotion of cross-linking in catecholamine-rich biopolymers frameworks

    Penicillamine prevents damaging redox in vitro interactions of bilirubin and copper

    Get PDF
    Toxic effects of unconjugated bilirubin (BR) in neonatal hyperbilirubinemia have been related to redox and/or coordinate interactions with Cu2+. However, the development and mechanisms of such interactions at physiological pH have not been resolved. This study shows that BR reduces Cu2+ to Cu1+ in 1:1 stoichiometry. Apparently, BR undergoes degradation, i.e. BR and Cu2+ do not form stable complexes. The binding of Cu2+ to inorganic phosphates, liposomal phosphate groups, or to chelating drug penicillamine, impedes redox interactions with BR. Cu1+ undergoes spontaneous oxidation by O2 resulting in hydrogen peroxide accumulation and hydroxyl radical production. In relation to this, copper and BR induced synergistic oxidative/damaging effects on erythrocytes membrane, which were alleviated by penicillamine. The production of reactive oxygen species by BR and copper represents a plausible cause of BR toxic effects and cell damage in hyperbilirubinemia. Further examination of therapeutic potentials of copper chelators in the treatment of severe neonatal hyperbilirubinemia is needed

    A simple method to assess freezing of gait in Parkinson's disease patients

    Get PDF
    Freezing of gait (FOG) can be assessed by clinical and instrumental methods. Clinical examination has the advantage of being available to most clinicians; however, it requires experience and may not reveal FOG even for cases confirmed by the medical history. Instrumental methods have an advantage in that they may be used for ambulatory monitoring. The aim of the present study was to describe and evaluate a new instrumental method based on a force sensitive resistor and Pearson's correlation coefficient (Pcc) for the assessment of FOG. Nine patients with Parkinson's disease in the "on" state walked through a corridor, passed through a doorway and made a U-turn. We analyzed 24 FOG episodes by computing the Pcc between one "regular/normal" step and the rest of the steps. The Pcc reached +/- 1 for "normal" locomotion, while correlation diminished due to the lack of periodicity during FOG episodes. Gait was assessed in parallel with video. FOG episodes determined from the video were all detected with the proposed method. The computed duration of the FOG episodes was compared with those estimated from the video. The method was sensitive to various types of freezing; although no differences due to different types of freezing were detected. The study showed that Pcc analysis permitted the computerized detection of FOG in a simple manner analogous to human visual judgment, and its automation may be useful in clinical practice to provide a record of the history of FOG

    Multi-field surface electrode for selective electrical stimulation

    No full text
    corecore