276 research outputs found

    A Digital X-Ray Tomosynthesis Coupled Near Infrared Spectral Tomography System for Dual-Modality Breast Imaging

    Get PDF
    A Near Infrared Spectral Tomography (NIRST) system has been developed and integrated into a commercial Digital Breast Tomosynthesis (DBT) scanner to allow structural and functional imaging of breast in vivo. The NIRST instrument uses an 8-wavelength continuous wave (CW) laser-based scanning source assembly and a 75-element silicon photodiode solid-state detector panel to produce dense spectral and spatial projection data from which spectrally constrained 3D tomographic images of tissue chromophores are produced. Integration of the optical imaging system into the DBT scanner allows direct co-registration of the optical and DBT images, while also facilitating the synergistic use of x-ray contrast as anatomical priors in optical image reconstruction. Currently, the total scan time for a combined NIRST-DBT exam is ~50s with data collection from 8 wavelengths in the optical scan requiring ~42s to complete. The system was tested in breast simulating phantoms constructed using intralipid and blood in an agarose matrix with a 3 cm x 2 cm cylindrical inclusion at 1 cm depth from the surface. Diffuse image reconstruction of total hemoglobin (HbT) concentration resulted in accurate recovery of the lateral size and position of the inclusion to within 6% and 8%, respectively. Use of DBT structural priors in the NIRST reconstruction process improved the quantitative accuracy of the HbT recovery, and led to linear changes in imaged versus actual contrast, underscoring the advantages of dual-modality optical imaging approaches. The quantitative accuracy of the system can be further improved with independent measurements of scattering properties through integration of frequency or time domain data

    Characterization of Hemoglobin, Water, and NIR Scattering in Breast Tissue: Analysis of Intersubject Variability and Menstrual Cycle Changes

    Get PDF
    Near-infrared imaging was used to quantify typical values of hemoglobin concentration, oxygen saturation, water fraction, scattering power, and scattering amplitude within the breast tissue of volunteer subjects. A systematic study of the menstrual variations in these parameters was carried out by measuring a group of seven premenopausal normal women (aged 41 to 47 years) in the follicular (days 7 to 14 of the cycle) and secretory phases (days 21 to 28) of the cycle, for two complete menstrual cycles. An average increase in hemoglobin concentration of 2.6 μM or 13% of the background breast values was observed in the secretory phase relative to the follicular phase (p\u3c0.0001), but no other average near-infrared parameter changes were significant. While repeatable and systematic changes were observed in all parameters for individual subjects, large intersubject variations were present in all parameters. In a survey of thirty-nine normal subjects, the total hemoglobin varied from 9 to 45 μM, with a systematic correlation observed between total hemoglobin concentration and breast radiographic density. Scattering power and scattering amplitude were also correlated with radiographic density, but oxygen saturation and water fraction were not. Images of breast lesions indicate that total hemoglobin-based contrast can be up to 200% relative to the background in the same breast. Yet, since the background hemoglobin values vary considerably among breasts, the maximum hemoglobin concentrations observed in cancer tumors may vary considerably as well. In light of these observations, it may be important to use hemoglobin contrast values relative to the background for a given breast, rather than absolute hemoglobin contrast when trying to compare the features of breast lesions among subjects

    Near-Infrared Characterization of Breast Tumors In Vivo using Spectrally-Constrained Reconstruction

    Get PDF
    Multi-wavelength Near-Infrared (NIR) Tomography was utilized in this study to non-invasively quantify physiological parameters of breast tumors using direct spectral reconstruction. Frequency domain NIR measurements were incorporated with a new spectrally constrained direct chromophore and scattering image reconstruction algorithm, which was validated in simulations and experimental phantoms. Images of total hemoglobin, oxygen saturation, water, and scatter parameters were obtained with higher accuracy than previously reported. Using this spectral approach, in vivo NIR images are presented and interpreted through a series of case studies (n=6 subjects) having differing abnormalities. The corresponding mammograms and ultrasound images are also evaluated. Three of six cases were malignant (infiltrating ductal carcinomas) and showed higher hemoglobin (34–86% increase), a reduction in oxygen saturation, an increase in water content as well as scatter changes relative to surrounding normal tissue. Three of six cases were benign, two of which were diagnosed with fibrocystic disease and showed a dominant contrast in water, consistent with fluid filled cysts. Scatter amplitude was the main source of contrast in the volunteer with the benign condition fibrosis, which typically contains denser collagen tissue. The changes monitored correspond to physiological changes associated with angiogenesis, hypoxia and cell proliferation anticipated in cancers. These changes represent potential diagnostic indicators, which can be assessed to characterize breast tumors

    Joint Registration and Limited-Angle Reconstruction of Digital Breast Tomosynthesis

    Get PDF
    Digital breast tomosynthesis (DBT), an emerging imaging modality, provides a pseudo-3D image of the breast. Algorithms to aid the human observer process these large datasets involve two key tasks: reconstruction and registration. Previous studies separated these steps, solving each task independently. This can be effective if reconstructing using a complete set of data, e.g., in cone beam CT, assuming that only simple deformations exist. However, for ill-posed limited-angle problems such as DBT, estimating the deformation is complicated by the significant artefacts associated with DBT reconstructions, leading to severe inaccuracies in the registration. In this paper, we present an innovative algorithm, which combines reconstruction of a pair of temporal DBT acquisitions with their simultaneous registration. Using various computational phantoms and in vivo DBT simulations, we show that, compared to the conventional sequential method, jointly estimating image intensities and transformation parameters gives superior results with respect to reconstruction fidelity and registration accuracy

    Assumptions behind grammatical approaches to code-switching: when the blueprint is a red herring

    Get PDF
    Many of the so-called ‘grammars’ of code-switching are based on various underlying assumptions, e.g. that informal speech can be adequately or appropriately described in terms of ‘‘grammar’’; that deep, rather than surface, structures are involved in code-switching; that one ‘language’ is the ‘base’ or ‘matrix’; and that constraints derived from existing data are universal and predictive. We question these assumptions on several grounds. First, ‘grammar’ is arguably distinct from the processes driving speech production. Second, the role of grammar is mediated by the variable, poly-idiolectal repertoires of bilingual speakers. Third, in many instances of CS the notion of a ‘base’ system is either irrelevant, or fails to explain the facts. Fourth, sociolinguistic factors frequently override ‘grammatical’ factors, as evidence from the same language pairs in different settings has shown. No principles proposed to date account for all the facts, and it seems unlikely that ‘grammar’, as conventionally conceived, can provide definitive answers. We conclude that rather than seeking universal, predictive grammatical rules, research on CS should focus on the variability of bilingual grammars

    Microwave Imaging for Neoadjuvant Chemotherapy Monitoring: Initial Clinical Experience

    Get PDF
    Introduction: Microwave tomography recovers images of tissue dielectric properties, which appear to be specific for breast cancer, with low-cost technology that does not present an exposure risk, suggesting the modality may be a good candidate for monitoring neoadjuvant chemotherapy. Methods: Eight patients undergoing neoadjuvant chemotherapy for locally advanced breast cancer were imaged longitudinally five to eight times during the course of treatment. At the start of therapy, regions of interest (ROIs) were identified from contrast-enhanced magnetic resonance imaging studies. During subsequent microwave examinations, subjects were positioned with their breasts pendant in a coupling fluid and surrounded by an immersed antenna array. Microwave property values were extracted from the ROIs through an automated procedure and statistical analyses were performed to assess short term (30 days) and longer term (four to six months) dielectric property changes. Results: Two patient cases (one complete and one partial response) are presented in detail and demonstrate changes in microwave properties commensurate with the degree of treatment response observed pathologically. Normalized mean conductivity in ROIs from patients with complete pathological responses was significantly different from that of partial responders (P value = 0.004). In addition, the normalized conductivity measure also correlated well with complete pathological response at 30 days (P value = 0.002). Conclusions: These preliminary findings suggest that both early and late conductivity property changes correlate well with overall treatment response to neoadjuvant therapy in locally advanced breast cancer. This result is consistent with earlier clinical outcomes that lesion conductivity is specific to differentiating breast cancer from benign lesions and normal tissue

    Mammography Facility Characteristics Associated With Interpretive Accuracy of Screening Mammography

    Get PDF
    BackgroundAlthough interpretive performance varies substantially among radiologists, such variation has not been examined among mammography facilities. Understanding sources of facility variation could become a foundation for improving interpretive performance.MethodsIn this cross-sectional study conducted between 1996 and 2002, we surveyed 53 facilities to evaluate associations between facility structure, interpretive process characteristics, and interpretive performance of screening mammography (ie, sensitivity, specificity, positive predictive value [PPV1], and the likelihood of cancer among women who were referred for biopsy [PPV2]). Measures of interpretive performance were ascertained prospectively from mammography interpretations and cancer data collected by the Breast Cancer Surveillance Consortium. Logistic regression and receiver operating characteristic (ROC) curve analyses estimated the association between facility characteristics and mammography interpretive performance or accuracy (area under the ROC curve [AUC]). All P values were two-sided.ResultsOf the 53 eligible facilities, data on 44 could be analyzed. These 44 facilities accounted for 484 463 screening mammograms performed on 237 669 women, of whom 2686 were diagnosed with breast cancer during follow-up. Among the 44 facilities, mean sensitivity was 79.6% (95% confidence interval [CI] = 74.3% to 84.9%), mean specificity was 90.2% (95% CI = 88.3% to 92.0%), mean PPV1 was 4.1% (95% CI = 3.5% to 4.7%), and mean PPV2 was 38.8% (95% CI = 32.6% to 45.0%). The facilities varied statistically significantly in specificity (P < .001), PPV1 (P < .001), and PPV2 (P = .002) but not in sensitivity (P = .99). AUC was higher among facilities that offered screening mammograms alone vs those that offered screening and diagnostic mammograms (0.943 vs 0.911, P = .006), had a breast imaging specialist interpreting mammograms vs not (0.932 vs 0.905, P = .004), did not perform double reading vs independent double reading vs consensus double reading (0.925 vs 0.915 vs 0.887, P = .034), or conducted audit reviews two or more times per year vs annually vs at an unknown frequency (0.929 vs 0.904 vs 0.900, P = .018).ConclusionMammography interpretive performance varies statistically significantly by facility

    In Support of the Matrix Language Frame Model: Evidence from Igbo-English Intrasentential Codeswitching

    Get PDF
    This paper explores the morphosyntactic features of mixed nominal expressions in a sample of empirical Igbo-English intrasentential codeswitching data (i.e. codeswitching within a bilingual clause) in terms of the Matrix Language Frame (MLF) model. Since both Igbo and English differ in the relative order of head and complement within the nominal argument phrase, the analysed data seem appropriate for testing the veracity of the principal assumption underpinning the MLF model: the notion that the two languages (in our case Igbo and English) participating in codeswitching do not both contribute equally to the morphosyntactic frame of a mixed constituent. As it turns out, the findings provide both empirical and quantitative support for the basic theoretical view that there is a Matrix Language (ML) versus Embedded Language (EL) hierarchy in classic codeswitching as predicted by the MLF model because both Igbo and English do not simultaneously satisfy the roles of the ML in Igbo-English codeswitching

    Image reconstruction techniques; (170.3880) Medical and biological imaging

    Get PDF
    Abstract: Diffuse optical tomography (DOT) reconstructs the images of internal optical parameter distribution using noninvasive boundary measurements. The image reconstruction procedure is known to be an ill-posed problem. In order to solve such a problem, a regularization technique is needed to constrain the solution space. In this study, a projection-error-based adaptive regularization (PAR) technique is proposed to improve the reconstructed image quality. Simulations are performed using a diffusion approximation model and the simulated results demonstrate that the PAR technique can improve reconstruction precision of object more effectively. The method is demonstrated to have low sensitivity to noise at various noise levels. Moreover, with the PAR method, the detectability of an object located both at the center and near the peripheral regions has been increased largely
    corecore