2 research outputs found

    Green batteries for clean skies: Sustainability assessment of lithium‐sulfur all‐solid‐state batteries for electric aircraft

    Get PDF
    The use of novel battery technologies in short-haul electric aircraft can support the aviation sector in achieving its goals for a sustainable development. However, the production of the batteries is often associated with adverse environmental and socio-economic impacts, potentially leading to burden shifting. Therefore, this paper investigates alternative technologies for lithium–sulfur all-solid-state batteries (LiS-ASSBs) in terms of their contribution to the sustainable development goals (SDGs). We propose a new approach that builds on life cycle sustainability assessment and links the relevant impact categories to the related SDGs. The approach is applied to analyze four LiS-ASSB configurations with different solid electrolytes, designed for maximum specific energy using an electrochemical model. They are compared to a lithium–sulfur battery with a liquid electrolyte as a benchmark. The results of our cradle-to-gate analysis reveal that the new LiS-ASSB technologies generally have a positive contribution to SDG achievement. However, the battery configuration with the best technical characteristics is not the most promising in terms of SDG achievement. Especially variations from the technically optimal cathode thickness can improve the SDG contribution. A sensitivity analysis shows that the results are rather robust against the weighting factors within the SDG quantification method

    Green batteries for clean skies: Sustainability assessment of lithium‐sulfur all‐solid‐state batteries for electric aircraft

    No full text
    AbstractThe use of novel battery technologies in short‐haul electric aircraft can support the aviation sector in achieving its goals for a sustainable development. However, the production of the batteries is often associated with adverse environmental and socio‐economic impacts, potentially leading to burden shifting. Therefore, this paper investigates alternative technologies for lithium–sulfur all‐solid‐state batteries (LiS‐ASSBs) in terms of their contribution to the sustainable development goals (SDGs). We propose a new approach that builds on life cycle sustainability assessment and links the relevant impact categories to the related SDGs. The approach is applied to analyze four LiS‐ASSB configurations with different solid electrolytes, designed for maximum specific energy using an electrochemical model. They are compared to a lithium–sulfur battery with a liquid electrolyte as a benchmark. The results of our cradle‐to‐gate analysis reveal that the new LiS‐ASSB technologies generally have a positive contribution to SDG achievement. However, the battery configuration with the best technical characteristics is not the most promising in terms of SDG achievement. Especially variations from the technically optimal cathode thickness can improve the SDG contribution. A sensitivity analysis shows that the results are rather robust against the weighting factors within the SDG quantification method.Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy ‐ EXC 2163/1‐ Sustainable and Energy Efficient Aviatio
    corecore