10,641 research outputs found
Analytical prediction of the interior noise for cylindrical models of aircraft fuselages for prescribed exterior noise fields. Phase 2: Models for sidewall trim, stiffened structures and cabin acoustics with floor partition
An airplane interior noise prediction model is developed to determine the important parameters associated with sound transmission into the interiors of airplanes, and to identify apropriate noise control methods. Models for stiffened structures, and cabin acoustics with floor partition are developed. Validation studies are undertaken using three test articles: a ring stringer stiffened cylinder, an unstiffened cylinder with floor partition, and ring stringer stiffened cylinder with floor partition and sidewall trim. The noise reductions of the three test articles are computed using the heoretical models and compared to measured values. A statistical analysis of the comparison data indicates that there is no bias in the predictions although a substantial random error exists so that a discrepancy of more than five or six dB can be expected for about one out of three predictions
Shock transmission in coupled beams and rib stiffened structures
Shock transmission in a simple coupled beam structure and in a ring-stringer stiffened cylinder is investigated experimentally and analytically using wave transmission and statistical energy analysis concepts. The use of the response spectrum to characterize the excitation provided to a simple beam by a force pulse is studied. Analysis of the transmission of a dilatation wave in a periodically stiffened plate indicates that the stiffeners are fairly transparent to the wave, but some of the dilatational energy is scattered into bending at each support
Propeller aircraft interior noise model
An analytical model was developed to predict the interior noise of propeller-driven aircraft. The fuselage model is that of a cylinder with a structurally-integral floor. The cabin sidewall is stiffened by stringers and ring frames, and the floor by longitudinal beams. The cabin interior is covered with a sidewall treatments consisting of layers of porous material and an impervious trim septum. Representation of the propeller pressure field is utilized as input data in the form of the propeller noise signature at a series of locations on a grid over the fuselage structure. Results obtained from the analytical model are compared with test data measured by NASA in a scale model cylindrical fuselage excited by a model propeller
Propeller aircraft interior noise model utilization study and validation
Utilization and validation of a computer program designed for aircraft interior noise prediction is considered. The program, entitled PAIN (an acronym for Propeller Aircraft Interior Noise), permits (in theory) predictions of sound levels inside propeller driven aircraft arising from sidewall transmission. The objective of the work reported was to determine the practicality of making predictions for various airplanes and the extent of the program's capabilities. The ultimate purpose was to discern the quality of predictions for tonal levels inside an aircraft occurring at the propeller blade passage frequency and its harmonics. The effort involved three tasks: (1) program validation through comparisons of predictions with scale-model test results; (2) development of utilization schemes for large (full scale) fuselages; and (3) validation through comparisons of predictions with measurements taken in flight tests on a turboprop aircraft. Findings should enable future users of the program to efficiently undertake and correctly interpret predictions
Environmental characteristics of black crappie (\u3ci\u3ePomoxis nigromaculatus\u3c/i\u3e) nesting sites in two South Dakota waters
A biotelemetry study was undertaken during spring 1995 to identify black crappie (Pomoxis nigromaculatus) nesting sites in two South Dakota water bodies. Individually coded ultrasonic transmitters were implanted into the body cavity of 15 adult male black crappie in each water body prior to spawning. Available habitat characteristics were recorded at 75 randomly selected sites within each water body, and habitat characteristics at nesting sites were recorded for each male black crappie believed to be nesting. Of the habitat characteristics analyzed, only substrate firmness did not differ (P=0.79) between water bodies. In Richmond Lake, black crappie selected nesting sites with live cattails (Typha spp.) that were protected from prevailing south winds. In Brant Lake, black crappie selected nest sites with vegetation (usually woody debris) and silty substrate that had warmer water and were protected from wind and waves. It appeared that black crappie nested in the most protected areas available
Propeller aircraft interior noise model: User's manual for computer program
A computer program entitled PAIN (Propeller Aircraft Interior Noise) has been developed to permit calculation of the sound levels in the cabin of a propeller-driven airplane. The fuselage is modeled as a cylinder with a structurally integral floor, the cabin sidewall and floor being stiffened by ring frames, stringers and floor beams of arbitrary configurations. The cabin interior is covered with acoustic treatment and trim. The propeller noise consists of a series of tones at harmonics of the blade passage frequency. Input data required by the program include the mechanical and acoustical properties of the fuselage structure and sidewall trim. Also, the precise propeller noise signature must be defined on a grid that lies in the fuselage skin. The propeller data are generated with a propeller noise prediction program such as the NASA Langley ANOPP program. The program PAIN permits the calculation of the space-average interior sound levels for the first ten harmonics of a propeller rotating alongside the fuselage. User instructions for PAIN are given in the report. Development of the analytical model is presented in NASA CR 3813
Bounding Solutions for Performance of Vibratory Plows
This paper discusses the reduction in the applie
Loss of multiyear landfast sea ice from Yelverton Bay, Ellesmere Island, Nunavut, Canada
For much of the 20th century, multiyear landfast sea ice (MLSI) formed a permanent ice cover in Yelverton Bay, Ellesmere Island. This MLSI formed following the removal of ice shelf ice from Yelverton Bay in the early 1900s, including the well-documented Ice Island T-3. The MLSI cover survived intact for 55-60 years until 2005, when >690 km2 (90%) of MLSI was lost from Yelverton Bay. Further losses occurred in 2008, and the last of the Yelverton Bay MLSI was lost in August 2010. Ground penetrating radar (GPR) transects and ice cores taken in June 2009 provide the first detailed assessment of MLSI in Yelverton Inlet, and indeed the last assessment now that it has all been replaced with first-year ice. A detailed history of ice shelf, glacier, and MLSI changes in Yelverton Bay since the early 1900s is presented using remotely sensed imagery (air photos, space-borne optical, and radar scenes) and ancillary evidence from in situ surveys. Recent changes in the floating ice cover here align with the broad-scale trend of long-term reductions in age and thickness of sea ice in the Arctic Ocean and Canadian Arctic Archipelago
X-ray observations of highly obscured τ_(9.7 μm) > 1 sources: an efficient method for selecting Compton-thick AGN?
Observations with the IRS spectrograph onboard Spitzer have found many sources with very deep Si features at 9.7 μm, that have optical depths of τ > 1. Since it is believed that a few of these systems in the local Universe are associated with Compton-thick active galactic nuclei (hereafter AGN), we set out to investigate whether the presence of a strong Si absorption feature is a good indicator of a heavily obscured AGN. We compile X-ray spectroscopic observations available in the literature on the optically-thick (τ_(9.7 μm) > 1) sources from the 12 μm IRAS Seyfert sample. We find that the majority of the high-τ optically confirmed Seyferts (six out of nine)
in the 12 μm sample are probably Compton-thick. Thus, we provide direct evidence of a connection between mid-IR optically-thick galaxies and Compton-thick AGN, with the success rate being close to 70% in the local Universe. This is at least comparable to, if not better than, other rates obtained with photometric information in the mid to far-IR, or even mid-IR to X-rays. However, this technique cannot provide complete Compton-thick AGN samples, i.e., there are many Compton-thick AGN that do not display significant Si
absorption, with the most notable example being NGC1068. After assessing the validity of the high 9.7 μm optical-depth technique in the local Universe, we attempt to construct a sample of candidate Compton-thick AGN at higher redshifts. We compile a sample of seven high-τ Spitzer sources in the Great Observatories Origins Deep Survey (GOODS) and five in the Spitzer First-Look Survey.
All these have been selected to have no PAH features (EW_(6.2 μm) 10^(42) erg s^(−1)) of the detected GOODS sources corroborates that these are AGN. For FLS, ancillary optical spectroscopy reveals hidden nuclei in two more sources. SED fitting can support the presence of an AGN in the vast majority of sources. Owing to the limited photon statistics, we cannot derive useful constraints from X-ray spectroscopy on whether these sources are Compton-thick. However, the low L_(X)/L_(6 μm) luminosity ratios, suggest that at least four out of the six detected sources in GOODS may be associated with Compton-thick AGN
- …