633 research outputs found
Supervillin (p205): A Novel Membrane-associated, F-Actinâbinding Protein in the Villin/Gelsolin Superfamily
Actin-binding membrane proteins are involved in both adhesive interactions and motile processes. We report here the purification and initial characterization of p205, a 205-kD protein from bovine neutrophil plasma membranes that binds to the sides of actin filaments in blot overlays. p205 is a tightly bound peripheral membrane protein that cosediments with endogenous actin in sucrose gradients and immunoprecipitates. Amino acid sequences were obtained from SDS-PAGEâpurified p205 and used to generate antipeptide antibodies, immunolocalization data, and cDNA sequence information. The intracellular localization of p205 in MDBK cells is a function of cell density and adherence state. In subconfluent cells, p205 is found in punctate spots along the plasma membrane and in the cytoplasm and nucleus; in adherent cells, p205 concentrates with E-cadherin at sites of lateral cellâcell contact. Upon EGTA-mediated cell dissociation, p205 is internalized with E-cadherin and F-actin as a component of adherens junctions ârings.â At later times, p205 is observed in cytoplasmic punctae. The high abundance of p205 in neutrophils and suspension-grown HeLa cells, which lack adherens junctions, further suggests that this protein may play multiple roles during cell growth, adhesion, and motility. Molecular cloning of p205 cDNA reveals a bipartite structure. The COOH terminus exhibits a striking similarity to villin and gelsolin, particularly in regions known to bind F-actin. The NH2 terminus is novel, but contains four potential nuclear targeting signals. Because p205 is now the largest known member of the villin/gelsolin superfamily, we propose the name, âsupervillin.â We suggest that supervillin may be involved in actin filament assembly at adherens junctions and that it may play additional roles in other cellular compartments
Archvillin, a muscle-specific isoform of supervillin, is an early expressed component of the costameric membrane skeleton
The membrane skeleton protein supervillin binds tightly to both F-actin and membranes and can potentiate androgen receptor activity in non-muscle cells. We report that muscle, which constitutes the principal tissue source for supervillin sequences, contains a approximately 250 kDa isoform of supervillin that localizes within nuclei and with dystrophin at costameres, regions of F-actin membrane attachment in skeletal muscle. The gene encoding this protein, \u27archvillin\u27 (Latin, archi; Greek, archos; \u27principal\u27 or \u27chief\u27), contains an evolutionarily conserved, muscle-specific 5\u27 leader sequence. Archvillin cDNAs also contain four exons that encode approximately 47 kDa of additional muscle-specific protein sequence in the form of two inserts within the function-rich N-terminus of supervillin. The first of these muscle-specific inserts contains two conserved nuclear targeting signals in addition to those found in sequences shared with supervillin. Archvillin, like supervillin, binds directly to radiolabeled F-actin and co-fractionates with plasma membranes. Colocalization of archvillin with membrane-associated actin filaments, non-muscle myosin II, and--to a lesser extent--vinculin was observed in myoblasts. Striking localizations of archvillin protein and mRNA were observed at the tips of differentiating myotubes. Transfected protein chimeras containing archvillin insert sequences inhibited myotube formation, consistent with a dominant-negative effect during early myogenesis. These data suggest that archvillin is among the first costameric proteins to assemble during myogenesis and that it contributes to myogenic membrane structure and differentiation
Domain analysis of supervillin, an F-actin bundling plasma membrane protein with functional nuclear localization signals
A growing number of actin-associated membrane proteins have been implicated in motile processes, adhesive interactions, and signal transduction to the cell nucleus. We report here that supervillin, an F-actin binding protein originally isolated from bovine neutrophil plasma membranes, contains functional nuclear targeting signals and localizes at or near vinculin-containing focal adhesion plaques in COS7-2 and CV1 cells. Overexpression of full-length supervillin in these cells disrupts the integrity of focal adhesion plaques and results in increased levels of F-actin and vinculin. Localization studies of chimeric proteins containing supervillin sequences fused with the enhanced green fluorescent protein indicate that: (1) the amino terminus promotes F-actin binding, targeting to focal adhesions, and limited nuclear localization; (2) the dominant nuclear targeting signal is in the center of the protein; and (3) the carboxy-terminal villin/gelsolin homology domain of supervillin does not, by itself, bind tightly to the actin cytoskeleton in vivo. Overexpression of chimeras containing both the amino-terminal F-actin binding site(s) and the dominant nuclear targeting signal results in the formation of large nuclear bundles containing F-actin, supervillin, and lamin. These results suggest that supervillin may contribute to cytoarchitecture in the nucleus, as well as at the plasma membrane
Passive Scalar: Scaling Exponents and Realizability
An isotropic passive scalar field advected by a rapidly-varying velocity
field is studied. The tail of the probability distribution for
the difference in across an inertial-range distance is found
to be Gaussian. Scaling exponents of moments of increase as
or faster at large order , if a mean dissipation conditioned on is
a nondecreasing function of . The computed numerically
under the so-called linear ansatz is found to be realizable. Some classes of
gentle modifications of the linear ansatz are not realizable.Comment: Substantially revised to conform with published version. Revtex (4
pages) with 2 postscript figures. Send email to [email protected]
KL Estimation of the Power Spectrum Parameters from the Angular Distribution of Galaxies in Early SDSS Data
We present measurements of parameters of the 3-dimensional power spectrum of
galaxy clustering from 222 square degrees of early imaging data in the Sloan
Digital Sky Survey. The projected galaxy distribution on the sky is expanded
over a set of Karhunen-Loeve eigenfunctions, which optimize the signal-to-noise
ratio in our analysis. A maximum likelihood analysis is used to estimate
parameters that set the shape and amplitude of the 3-dimensional power
spectrum. Our best estimates are Gamma=0.188 +/- 0.04 and sigma_8L = 0.915 +/-
0.06 (statistical errors only), for a flat Universe with a cosmological
constant. We demonstrate that our measurements contain signal from scales at or
beyond the peak of the 3D power spectrum. We discuss how the results scale with
systematic uncertainties, like the radial selection function. We find that the
central values satisfy the analytically estimated scaling relation. We have
also explored the effects of evolutionary corrections, various truncations of
the KL basis, seeing, sample size and limiting magnitude. We find that the
impact of most of these uncertainties stay within the 2-sigma uncertainties of
our fiducial result.Comment: Fig 1 postscript problem correcte
Targeted cell imaging properties of a deep red luminescent iridium(III) complex conjugated with a c-Myc signal peptide
A nuclear localisation sequence (NLS) peptide, PAAKRVKLD, derived from the human c-Myc regulator gene, has been functionalised with a long wavelength (λex = 550 nm; λem = 677 nm) cyclometalated organometallic iridium(III) complex to give the conjugate Ir-CMYC. Confocal fluorescence microscopy studies on human fibroblast cells imaged after 18â24 h incubation show that Ir-CMYC concentrations of 80â100 ÎŒM promote good cell uptake and nuclear localisation, which was confirmed though co-localisation studies using Hoechst 33342. In comparison, a structurally related, photophysically analogous iridium(III) complex lacking the peptide sequence, Ir-PYR, showed very different biological behaviour, with no evidence of nuclear, lysosomal or autophagic vesicle localisation and significantly increased toxicity to the cells at concentrations >10 ÎŒM that induced mitochondrial dysfunction. Supporting UV-visible and circular dichroism spectroscopic studies show that Ir-PYR and Ir-CMYC display similarly low affinities for DNA (ca. 103 Mâ1), consistent with electrostatic binding. Therefore the translocation and nuclear uptake properties of Ir-CMYC are attributed to the presence of the PAAKRVKLD nuclear localisation sequence in this complex
Geons with spin and charge
We construct new geon-type black holes in D>3 dimensions for Einstein's
theory coupled to gauge fields. A static nondegenerate vacuum black hole has a
geon quotient provided the spatial section admits a suitable discrete isometry,
and an antisymmetric tensor field of rank 2 or D-2 with a pure F^2 action can
be included by an appropriate (and in most cases nontrivial) choice of the
field strength bundle. We find rotating geons as quotients of the
Myers-Perry(-AdS) solution when D is odd and not equal to 7. For other D we
show that such rotating geons, if they exist at all, cannot be continuously
deformed to zero angular momentum. With a negative cosmological constant, we
construct geons with angular momenta on a torus at the infinity. As an example
of a nonabelian gauge field, we show that the D=4 spherically symmetric SU(2)
black hole admits a geon version with a trivial gauge bundle. Various
generalisations, including both black-brane geons and Yang-Mills theories with
Chern-Simons terms, are briefly discussed.Comment: 26 pages, 1 figure. LaTeX with amssymb, amsmath. (v2: References and
a figure added.
Galaxy Clustering in Early SDSS Redshift Data
We present the first measurements of clustering in the Sloan Digital Sky
Survey (SDSS) galaxy redshift survey. Our sample consists of 29,300 galaxies
with redshifts 5,700 km/s < cz < 39,000 km/s, distributed in several long but
narrow (2.5-5 degree) segments, covering 690 square degrees. For the full,
flux-limited sample, the redshift-space correlation length is approximately 8
Mpc/h. The two-dimensional correlation function \xi(r_p,\pi) shows clear
signatures of both the small-scale, ``fingers-of-God'' distortion caused by
velocity dispersions in collapsed objects and the large-scale compression
caused by coherent flows, though the latter cannot be measured with high
precision in the present sample. The inferred real-space correlation function
is well described by a power law, \xi(r)=(r/6.1+/-0.2 Mpc/h)^{-1.75+/-0.03},
for 0.1 Mpc/h < r < 16 Mpc/h. The galaxy pairwise velocity dispersion is
\sigma_{12} ~ 600+/-100 km/s for projected separations 0.15 Mpc/h < r_p < 5
Mpc/h. When we divide the sample by color, the red galaxies exhibit a stronger
and steeper real-space correlation function and a higher pairwise velocity
dispersion than do the blue galaxies. The relative behavior of subsamples
defined by high/low profile concentration or high/low surface brightness is
qualitatively similar to that of the red/blue subsamples. Our most striking
result is a clear measurement of scale-independent luminosity bias at r < 10
Mpc/h: subsamples with absolute magnitude ranges centered on M_*-1.5, M_*, and
M_*+1.5 have real-space correlation functions that are parallel power laws of
slope ~ -1.8 with correlation lengths of approximately 7.4 Mpc/h, 6.3 Mpc/h,
and 4.7 Mpc/h, respectively.Comment: 51 pages, 18 figures. Replaced to match accepted ApJ versio
Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis
In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci
- âŠ