14,340 research outputs found

    Development of a 60 kW alternator for SNAP-8

    Get PDF
    Design and development testing of 60 kW alternator for SNAP

    Analytical prediction of the interior noise for cylindrical models of aircraft fuselages for prescribed exterior noise fields. Phase 2: Models for sidewall trim, stiffened structures and cabin acoustics with floor partition

    Get PDF
    An airplane interior noise prediction model is developed to determine the important parameters associated with sound transmission into the interiors of airplanes, and to identify apropriate noise control methods. Models for stiffened structures, and cabin acoustics with floor partition are developed. Validation studies are undertaken using three test articles: a ring stringer stiffened cylinder, an unstiffened cylinder with floor partition, and ring stringer stiffened cylinder with floor partition and sidewall trim. The noise reductions of the three test articles are computed using the heoretical models and compared to measured values. A statistical analysis of the comparison data indicates that there is no bias in the predictions although a substantial random error exists so that a discrepancy of more than five or six dB can be expected for about one out of three predictions

    Low gravity phase separator

    Get PDF
    An apparatus is described for phase separating a gas-liquid mixture as might exist in a subcritical cryogenic helium vessel for cooling a superconducting magnet at low gravity such as in planetary orbit, permitting conservation of the liquid and extended service life of the superconducting magnet

    Compactifications of Deformed Conifolds, Branes and the Geometry of Qubits

    Get PDF
    We present three families of exact, cohomogeneity-one Einstein metrics in (2n+2)(2n+2) dimensions, which are generalizations of the Stenzel construction of Ricci-flat metrics to those with a positive cosmological constant. The first family of solutions are Fubini-Study metrics on the complex projective spaces CPn+1CP^{n+1}, written in a Stenzel form, whose principal orbits are the Stiefel manifolds V2(Rn+2)=SO(n+2)/SO(n)V_2(R ^{n+2})=SO(n+2)/SO(n) divided by Z2Z_2. The second family are also Einstein-K\"ahler metrics, now on the Grassmannian manifolds G2(Rn+3)=SO(n+3)/((SO(n+1)×SO(2))G_2(R^{n+3})=SO(n+3)/((SO(n+1)\times SO(2)), whose principal orbits are the Stiefel manifolds V2(Rn+2)V_2(R^{n+2}) (with no Z2Z_2 factoring in this case). The third family are Einstein metrics on the product manifolds Sn+1×Sn+1S^{n+1}\times S^{n+1}, and are K\"ahler only for n=1n=1. Some of these metrics are believed to play a role in studies of consistent string theory compactifications and in the context of the AdS/CFT correspondence. We also elaborate on the geometric approach to quantum mechanics based on the K\"ahler geometry of Fubini-Study metrics on CPn+1CP^{n+1}, and we apply the formalism to study the quantum entanglement of qubits.Comment: 31 page

    Thermodynamics of Magnetised Kerr-Newman Black Holes

    Get PDF
    The thermodynamics of a magnetised Kerr-Newman black hole is studied to all orders in the appended magnetic field BB. The asymptotic properties of the metric and other fields are dominated by the magnetic flux that extends to infinity along the axis, leading to subtleties in the calculation of conserved quantities such as the angular momentum and the mass. We present a detailed discussion of the implementation of a Wald-type procedure to calculate the angular momentum, showing how ambiguities that are absent in the usual asymptotically-flat case may be resolved by the requirement of gauge invariance. We also present a formalism from which we are able to obtain an expression for the mass of the magnetised black holes. The expressions for the mass and the angular momentum are shown to be compatible with the first law of thermodynamics and a Smarr type relation. Allowing the appended magnetic field BB to vary results in an extra term in the first law of the form −μdB-\mu dB where μ\mu is interpreted as an induced magnetic moment. Minimising the total energy with respect to the total charge QQ at fixed values of the angular momentum and energy of the seed metric allows an investigation of Wald's process. The Meissner effect is shown to hold for electrically neutral extreme black holes. We also present a derivation of the angular momentum for black holes in the four-dimensional STU model, which is N=2{\cal N}=2 supergravity coupled to three vector multiplets.Comment: 27 page

    Bulk/Boundary Thermodynamic Equivalence, and the Bekenstein and Cosmic-Censorship Bounds for Rotating Charged AdS Black Holes

    Get PDF
    We show that one may pass from bulk to boundary thermodynamic quantities for rotating AdS black holes in arbitrary dimensions so that if the bulk quantities satisfy the first law of thermodynamics then so do the boundary CFT quantities. This corrects recent claims that boundary CFT quantities satisfying the first law may only be obtained using bulk quantities measured with respect to a certain frame rotating at infinity, and which therefore do not satisfy the first law. We show that the bulk black hole thermodynamic variables, or equivalently therefore the boundary CFT variables, do not always satisfy a Cardy-Verlinde type formula, but they do always satisfy an AdS-Bekenstein bound. The universal validity of the Bekenstein bound is a consequence of the more fundamental cosmic censorship bound, which we find to hold in all cases examined. We also find that at fixed entropy, the temperature of a rotating black hole is bounded above by that of a non-rotating black hole, in four and five dimensions, but not in six or more dimensions. We find evidence for universal upper bounds for the area of cosmological event horizons and black-hole horizons in rotating black-hole spacetimes with a positive cosmological constant.Comment: Latex, 42 page

    Interacting Intersections

    Get PDF
    Intersecting p-branes can be viewed as higher-dimensional interpretations of multi-charge extremal p-branes, where some of the individual p-branes undergo diagonal dimensional oxidation, while the others oxidise vertically. Although the naive vertical oxidation of a single p-brane gives a continuum of p-branes, a more natural description arises if one considers a periodic array of p-branes in the higher dimension, implying a dependence on the compactification coordinates. This still reduces to the single lower-dimensional p-brane when viewed at distances large compared with the period. Applying the same logic to the multi-charge solutions, we are led to consider more general classes of intersecting p-brane solutions, again depending on the compactification coordinates, which turn out to be described by interacting functions rather than independent harmonic functions. These new solutions also provide a more satisfactory interpretation for the lower-dimensional multi-charge p-branes, which otherwise appear to be nothing more than the improbable coincidence of charge-centres of individual constituents with zero binding energy.Comment: 20 pages, Latex, references adde
    • …
    corecore