1,969 research outputs found
The Palomar Kernel Phase Experiment: Testing Kernel Phase Interferometry for Ground-based Astronomical Observations
At present, the principal limitation on the resolution and contrast of
astronomical imaging instruments comes from aberrations in the optical path,
which may be imposed by the Earth's turbulent atmosphere or by variations in
the alignment and shape of the telescope optics. These errors can be corrected
physically, with active and adaptive optics, and in post-processing of the
resulting image. A recently-developed adaptive optics post-processing
technique, called kernel phase interferometry, uses linear combinations of
phases that are self-calibrating with respect to small errors, with the goal of
constructing observables that are robust against the residual optical
aberrations in otherwise well-corrected imaging systems. Here we present a
direct comparison between kernel phase and the more established competing
techniques, aperture masking interferometry, point spread function (PSF)
fitting and bispectral analysis. We resolve the alpha Ophiuchi binary system
near periastron, using the Palomar 200-Inch Telescope. This is the first case
in which kernel phase has been used with a full aperture to resolve a system
close to the diffraction limit with ground-based extreme adaptive optics
observations. Excellent agreement in astrometric quantities is found between
kernel phase and masking, and kernel phase significantly outperforms PSF
fitting and bispectral analysis, demonstrating its viability as an alternative
to conventional non-redundant masking under appropriate conditions.Comment: Accepted to MNRA
Chromophore-labelled, luminescent platinum complexes: syntheses, structures, and spectroscopic properties
Ligands based upon 4-carboxamide-2-phenylquinoline derivatives have been synthesised with solubilising octyl hydrocarbon chains and tethered aromatic chromophores to give naphthyl (HL2), anthracenyl (HL3) and pyrenyl (HL4) ligand variants, together with a non-chromophoric analogue (HL1) for comparison. 1H NMR spectroscopic studies of the ligands showed that two non-interchangeable isomers exist for HL2 and HL4 while only one isomer exists for HL1 and HL3. Supporting DFT calculations on HL4 suggest that the two isomers may be closely isoenergetic with a relatively high barrier to exchange of ca. 100 kJ molā1. These new ligands were cyclometalated with Pt(II) to give complexes [Pt(L1ā4)(acac)] (acac = acetylacetonate). The spectroscopically characterised complexes were studied using multinuclear NMR spectroscopy including 195Pt{1H} NMR studies which revealed Ī“Pt ca. ā2785 ppm for [Pt(L1ā4)(acac)]. X-ray crystallographic studies were undertaken on [Pt(L3)(acac)] and [Pt(L4)(acac)], each showing the weakly distorted square planar geometry at Pt(II); the structure of [Pt(L3)(acac)] showed evidence for intermolecular PtāPt interactions. The UV-vis. absorption studies show that the spectral profiles for [Pt(L2ā4)(acac)] are a composite of the organic chromophore centred bands and a broad 1MLCT (5d ā Ļ*) band (ca. 440 nm) associated with the complex. Luminescence studies showed that complexes [Pt(L2ā4)(acac)] are dual emissive with fluorescence characteristic of the tethered fluorophore and long-lived phosphorescence attributed to 3MLCT emission. In the case of the pyrenyl derivative, [Pt(L4)(acac)], the close energetic matching of the 3MLCT and 3LCpyr excited states led to an elongation of the 3MLCT emission lifetime (Ļ = 42 Ī¼s) under degassed solvent conditions, suggestive of energy transfer processes between the two states
Recommended from our members
Genetics of Degenerative Cervical Myelopathy: A Systematic Review and Meta-Analysis of Candidate Gene Studies
Degenerative cervical myelopathy (DCM) is estimated to be the most common cause of adult spinal cord impairment. Evidence that is suggestive of a genetic basis to DCM has been increasing over the last decade. A systematic search was conducted in MEDLINE, EMBASE, Cochrane, and HuGENet databases from their origin up to 14th December 2019 to evaluate the role of single genes in DCM in its onset, clinical phenotype, and response to surgical intervention. The initial search yielded 914 articles, with 39 articles being identified as eligible after screening. We distinguish between those contributing to spinal column deterioration and those contributing to spinal cord deterioration in assessing the evidence of genetic contributions to DCM. Evidence regarding a total of 28 candidate genes was identified. Of these, 22 were found to have an effect on the radiological onset of spinal column disease, while 12 genes had an effect on clinical onset of spinal cord disease. Polymorphisms of eight genes were found to have an effect on the radiological severity of DCM, while three genes had an effect on clinical severity. Polymorphisms of six genes were found to have an effect on clinical response to surgery in spinal cord disease. There are clear genetic effects on the development of spinal pathology, the central nervous system (CNS) response to bony pathology, the severity of both bony and cord pathology, and the subsequent response to surgical intervention. Work to disentangle the mechanisms by which the genes that are reviewed here exert their effects, as well as improved quality of evidence across diverse populations is required for further investigating the genetic contribution to DCM
The Palomar kernel-phase experiment: testing kernel phase interferometry for ground-based astronomical observations
At present, the principal limitation on the resolution and contrast of astronomical imaging instruments comes from aberrations in the optical path, which may be imposed by the Earth's turbulent atmosphere or by variations in the alignment and shape of the telescope optics. These errors can be corrected physically,with active and adaptive optics, and in post-processing of the resulting image.Arecently developed adaptive optics post-processing technique, called kernelphase interferometry, uses linear combinations of phases that are self-calibrating with respect to small errors, with the goal of constructing observables that are robust against the residual optical aberrations in otherwise well-corrected imaging systems. Here, we present a direct comparison between kernel phase and the more established competing techniques, aperture masking interferometry, point spread function (PSF) fitting and bispectral analysis.We resolve the Ī± Ophiuchi binary system near periastron, using the Palomar 200-Inch Telescope. This is the first case in which kernel phase has been used with a full aperture to resolve a system close to the diffraction limit with ground-based extreme adaptive optics observations. Excellent agreement in astrometric quantities is found between kernel phase and masking, and kernel phase significantly outperforms PSF fitting and bispectral analysis, demonstrating its viability as an alternative to conventional non-redundant masking under appropriate conditions
DNA Replication Timing Is Maintained Genome-Wide in Primary Human Myoblasts Independent of D4Z4 Contraction in FSH Muscular Dystrophy
Facioscapulohumeral muscular dystrophy (FSHD) is linked to contraction of an array of tandem 3.3-kb repeats (D4Z4) at 4q35.2 from 11-100 copies to 1-10 copies. The extent to which D4Z4 contraction at 4q35.2 affects overall 4q35.2 chromatin organization remains unclear. BecauseĀ DNA replication timing is highly predictive of long-range chromatin interactions, we generated genome-wide replication-timing profiles for FSHD and control myogenic precursor cells. We compared non-immortalized myoblasts from four FSHD patients and three control individuals to each other and to a variety of other human cell types. This study also represents the first genome-wide comparison of replication timing profiles in non-immortalized human cell cultures. Myoblasts from both control and FSHD individuals all shared a myoblast-specific replication profile. In contrast, male and female individuals were readily distinguished by monoallelic differences in replication timing at DXZ4 and other regions across the X chromosome affected by X inactivation. We conclude that replication timing is a robust cell-type specific feature that is unaffected by FSHD-related D4Z4 contraction
Electronic structure of undoped and potassium doped coronene investigated by electron energy-loss spectroscopy
We performed electron energy-loss spectroscopy studies in transmission in
order to obtain insight into the electronic properties of potassium
intercalated coronene, a recently discovered superconductor with a rather high
transition temperature of about 15\,K. A comparison of the loss function of
undoped and potassium intercalated coronene shows the appearance of several new
peaks in the optical gap upon potassium addition. Furthermore, our core level
excitation data clearly signal filling of the conduction bands with electrons.Comment: 15 pages, 5 figures. arXiv admin note: substantial text overlap with
arXiv:1102.328
Synthesis and characterisation of fluorescent aminophosphines and their coordination to gold(i)
Three novel fluorescent aminophosphine ligands have been synthesised that incorporate napthyl (L1), pyrenyl (L2) and anthraquinone (L3) chromophores into their structures. The ligands react with [AuCl(tht)] (tht = tetrahydrothiophene) to give neutral complexes of the form [AuCl(L1ā3)]. Solid state, X-ray crystallographic data was obtained for the anthraquinone derivative, [AuCl(L3)], and showed a distorted linear coordination geometry at Au(I). The packing structure also revealed a number of intermolecular ĻāĻ interactions that involve the anthraquinone and phenyl units of the aminophosphine ligand. 31P NMR spectroscopic data revealed Ī“P values of +42.2 (L1), +42.1 (L2) and +26.1 (L3) ppm, which shifted downfield upon coordination to Au(I) to +64.6, +64.7, and +55.8 ppm, respectively. Supporting TD-DFT studies were able to reproduce the structure and 31P NMR chemical shifts of [AuCl(L3)] as well as rationalise the HOMOāLUMO compositions. Photophysical studies showed that the appended fluorophore dominates the absorption and emission properties for the ligands and complexes, with the anthraquinone derivatives showing visible emission at ca. 570 nm which was attributed to the intramolecular charge transfer character of the phosphinoaminoanthraquinone fragment
A soliton menagerie in AdS
We explore the behaviour of charged scalar solitons in asymptotically global
AdS4 spacetimes. This is motivated in part by attempting to identify under what
circumstances such objects can become large relative to the AdS length scale.
We demonstrate that such solitons generically do get large and in fact in the
planar limit smoothly connect up with the zero temperature limit of planar
scalar hair black holes. In particular, for given Lagrangian parameters we
encounter multiple branches of solitons: some which are perturbatively
connected to the AdS vacuum and surprisingly, some which are not. We explore
the phase space of solutions by tuning the charge of the scalar field and
changing scalar boundary conditions at AdS asymptopia, finding intriguing
critical behaviour as a function of these parameters. We demonstrate these
features not only for phenomenologically motivated gravitational Abelian-Higgs
models, but also for models that can be consistently embedded into eleven
dimensional supergravity.Comment: 62 pages, 21 figures. v2: added refs and comments and updated
appendice
'Reaching the hard to reach' - lessons learned from the VCS (voluntary and community Sector). A qualitative study.
Background The notion 'hard to reach' is a contested and ambiguous term that is commonly used within the spheres of social care and health, especially in discourse around health and social inequalities. There is a need to address health inequalities and to engage in services the marginalized and socially excluded sectors of society. Methods This paper describes a pilot study involving interviews with representatives from eight Voluntary and Community Sector (VCS) organisations . The purpose of the study was to explore the notion of 'hard to reach' and perceptions of the barriers and facilitators to accessing services for 'hard to reach' groups from a voluntary and community sector perspective. Results The 'hard to reach' may include drug users, people living with HIV, people from sexual minority communities, asylum seekers, refugees, people from black and ethnic minority communities, and homeless people although defining the notion of the 'hard to reach' is not straight forward. It may be that certain groups resist engaging in treatment services and are deemed hard to reach by a particular service or from a societal stance. There are a number of potential barriers for people who may try and access services, including people having bad experiences in the past; location and opening times of services and how services are funded and managed. A number of areas of commonality are found in terms of how access to services for 'hard to reach' individuals and groups could be improved including: respectful treatment of service users, establishing trust with service users, offering service flexibility, partnership working with other organisations and harnessing service user involvement.
Conclusions: If health services are to engage with groups that are deemed 'hard to reach' and marginalised from mainstream health services, the experiences and practices for engagement from within the VCS may serve as useful lessons for service improvement for statutory health services
- ā¦