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Abstract: Degenerative cervical myelopathy (DCM) is estimated to be the most common cause of adult
spinal cord impairment. Evidence that is suggestive of a genetic basis to DCM has been increasing
over the last decade. A systematic search was conducted in MEDLINE, EMBASE, Cochrane, and
HuGENet databases from their origin up to 14th December 2019 to evaluate the role of single genes in
DCM in its onset, clinical phenotype, and response to surgical intervention. The initial search yielded
914 articles, with 39 articles being identified as eligible after screening. We distinguish between those
contributing to spinal column deterioration and those contributing to spinal cord deterioration in
assessing the evidence of genetic contributions to DCM. Evidence regarding a total of 28 candidate
genes was identified. Of these, 22 were found to have an effect on the radiological onset of spinal
column disease, while 12 genes had an effect on clinical onset of spinal cord disease. Polymorphisms
of eight genes were found to have an effect on the radiological severity of DCM, while three genes
had an effect on clinical severity. Polymorphisms of six genes were found to have an effect on clinical
response to surgery in spinal cord disease. There are clear genetic effects on the development of spinal
pathology, the central nervous system (CNS) response to bony pathology, the severity of both bony
and cord pathology, and the subsequent response to surgical intervention. Work to disentangle the
mechanisms by which the genes that are reviewed here exert their effects, as well as improved quality
of evidence across diverse populations is required for further investigating the genetic contribution
to DCM.

Keywords: genetics; single nucleotide polymorphism; degenerative cervical myelopathy; ossification
posterior longitudinal ligament; severity; surgery

1. Introduction

Degenerative cervical myelopathy (DCM) is estimated to be the most common cause of spinal cord
impairment in the adult population and its incidence is expected to rise as the population continues to
age [1]. The term DCM is relatively new, and it was proposed to unify degenerative pathologies with a
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common injury mechanism (subacute, progressive spinal cord injury) and treatment (decompressive
surgery) [1]. This includes both cervical spondylosis (such as degenerative disc disease or osteophyte
formation) and the ossification of the posterior longitudinal ligament (OPLL) or ligamentum flavum
(OLF) [1–4]. These aetiologies were often previously separately considered, as cervical spondylotic
myelopathy (CSM) and OPLL.

The trajectory of DCM between patients is heterogenous and currently unpredictable and
unexplained [3]. For example, mechanical compression is an imaging hallmark of the disease.
However, the location and amount of compression does not correlate with the disease symptoms [5–7].
In fact, the clinical phenotype can range from asymptomatic to severe disability, nearly independent
from the amount of compression. Furthermore, patients’ response to surgical decompression, the
mainstay of treatment, is variable: it achieves excellent improvements in some patients, whereas in
others these do not occur [8]. Such variation between patients has led to increasing interest in the
genetic basis of this condition. One study reported a relative risk of 5.21 for the development of DCM
in first-degree relatives of patients [9].

So far, the effects of genes involved in inflammation, bone, and lipid metabolism have been linked to
both the pathogenesis of DCM and the response to surgical intervention [10,11]. However, these studies
have failed to disentangle their relationship to spinal degeneration and myelopathy. This is important, as
the fact that symptom progression and severity of spinal cord compression correlate poorly suggests that
the genetic polymorphisms that contribute to spinal column degeneration may be distinct from those
that influence the development of myelopathy in response to the resulting spinal cord compression.

Moreover, reviews have focused on CSM or OPLL, as opposed to DCM. Genes that influence how
the spinal cord copes with mechanical stress may be identifiable in studies that investigate the severity
of myelopathy and, in particular, the response to surgery.

Therefore, the objectives of this review are to provide a synthesis of the published literature on a
genetic contribution to the susceptibility to develop degenerative spinal column changes that lead
to DCM, the heterogeneity in severity of the clinical manifestation of DCM, and the heterogeneity in
response to surgery, in order to evaluate the genes that are specifically linked to the onset and recovery
of myelopathy.

2. Methods

A systematic review was conducted in accordance with the PRISMA guidelines; a PRISMA
checklist is presented in the Supplementary Data [12]. A search was conducted in MEDLINE, EMBASE,
Cochrane, and HuGENet databases for all relevant papers from database origin up to 14th December
2019. The full search strategy is presented in the Supplementary Data and it was developed in
conjunction with the Medical Library at the University of Cambridge School of Clinical Medicine.
Reference lists of key articles were systematically examined to identify further eligible articles.

Titles and abstracts were screened for relevance and, subsequently, full text papers were screened
for eligibility, according to the following inclusion criteria:

• Primary clinical trial
• DCM is the primary condition being addressed
• Focus on genetics (specific gene identified)
• Human study
• English language
• Full text article

Animal studies, case reports, letters, editorials, reviews, technical notes, commentaries, proposals,
and corrections were excluded. In addition, articles meeting the following criteria were excluded:

• Paediatric studies (patients < 18 years)
• Focus on acute trauma and acute spinal cord injury
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• Focus on thoracic or lumbar spine

Two authors independently assessed the full-texts of potentially relevant articles (DHP and BMD),
with any disagreements being resolved through discussion until agreement was reached.

Data that were extracted from the eligible articles included: study design, number of cases, number
of controls, participant demographics, patient disease profile, gene studied, polymorphism/haplotype
studied, and effects of polymorphisms and haplotypes on DCM susceptibility/severity/response
to surgery (principal summary measures: odds ratios). The risk of bias was assessed through an
evaluation of study design, methods of study population selection, matching of controls to cases,
and the consideration of publication source. The MINORS methodological items were used to give
structure to this process [13]. The GRADE guidelines were used to rate the quality of evidence for
each candidate gene, and across genes for each of the three main questions (susceptibility, severity,
response) [14].

Meta-analysis using the Cochrane Review Manager 5.3 software was used for polymorphisms, where
more than one study had investigated the same polymorphism and the requisite data were available.

3. Results

After removing duplicates, a total of 914 articles were screened and 39 were eligible for inclusion
(Figure 1). In total, 37 articles addressed the genetics of susceptibility to developing DCM, 13 articles
addressed the genetics of heterogeneity in DCM severity (either radiological or clinical severity) and six
addressed the genetics of response to surgery. A total of 28 genes were identified, with key information
regarding each candidate gene presented in Tables 1–3.
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3.1. What are the Genetic Effects on Susceptibility to Development of DCM?

Evidence regarding the onset of DCM/OPLL was identified for 28 genes: ACE, APOE, BID, BMP2,
BMP4, BMP9, COL6A1, COL9A2, COL11A2, FGF2, FGFR1, FGFR2, HIF1A, IL1B, IL15RA, IL18RAP,
leptin receptor, NPPS, OPG, OPN, RUNX2, TGFB1, TGFB3, TGFBR2, TLR5, VDBP, VDR, and VKORC1.
Of these 28 genes, 22 were found to be associated with the radiological onset of spinal pathology, while
12 were associated with the clinical development of DCM (i.e., spinal cord pathology). For six genes,
no significant effect of polymorphisms has been found by the studies reviewed to date: FGF2, FGFR2,
IL18RAP, leptin receptor, TLR5, and VDBP. Most of the genes (19, 68%) have been investigated by only
a single study. Bone morphogenetic protein genes (9, 32%) and collagen genes were the most studied
gene groups (8, 29%). Table 1 presents full information for each gene.



J. Clin. Med. 2020, 9, 282 5 of 30

Table 1. Susceptibility to radiological or clinical degenerative cervical myelopathy (DCM).

Candidate
Gene

Papers
Investigating

Study
Population

Location

No. of
Patients

No. of
Controls Matching of Controls

Radiological or
Clinical Onset of

DCM
Proposed Mechanism Odds Ratio

(Susceptibility)
p-Value

(Susceptibility)

ACE Kim et al.
(2014) [15] South Korea 95 OPLL 274 Controlled for age and sex in

logistic regression models Radiological D/D genotype 2.20 0.002

APOE

Setzer et al.
(2008) [16] Germany 60 CSM 46

Age, sex. Controls were
patients with cervical

spondylosis without CSM
Clinical ε4 allele 3.50 0.008

Diptiranhan et
al. (2019) [17] India 100 CSM 100 Clinical

ε2 allele vs. ε3 allele 4.4 0.002

ε2 allele vs. ε4 allele 6.69 0.009

BID
Chon et al.
(2014) [18] Korea 157 OPLL 209

Controlled for age and sex in
logistic regression models

Radiological rs8190315 (Ser10 Gly) G allele 2.66 0.005

rs2072392 (Asp60Asp) C allele 2.66 0.005

BMP2

Wang et al.
(2008) [19] China 57 OPLL 135 Age, sex Radiological Ser87Ser A/G allele 0.081

Ser37Ala G allele <0.001

Liu et al.
(2010) [20] China

82 (48
OPLL, 12
OLF, 22

both)

118 Age, sex Radiological rs1005464 G allele 0.435

Yan et al.
(2013) [21] China 420 OPLL 506 Age, sex Radiological 109T>G G allele (Ser37Ala G allele) <0.001

570A>T T allele 0.005

Kim et al.
(2014) [22] South Korea 110 OPLL 211 No. Controls were family

members
Radiological Ser87Ser A/G allele 0.411

Ser37Ala G allele 0.670
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Table 1. Cont.

Candidate
Gene

Papers
Investigating

Study
Population

Location

No. of
Patients

No. of
Controls Matching of Controls

Radiological or
Clinical Onset of

DCM
Proposed Mechanism Odds Ratio

(Susceptibility)
p-Value

(Susceptibility)

BMP4

Meng et al.
(2010) [23] China 179 OPLL 288 Radiological −5826G>A A allele 0.495

6007C>T T allele 1.57 (only
males) 0.014

Ren et al.
(2012)a [24] China 450 OPLL 550

Age, sex, BMI, bone mineral
density, exercise level,

sleeping habit, smoking
status, alcohol consumption.

Radiological

rs762642 T>G G allele 0.353

intron 2 (54422783) G>T T allele 0.868

rs762643 C>A A allele 0.365

rs2855530 C>G G allele 0.661

rs2761884 C>A A allele 0.469

intron 5 (54419501) G>A A allele 0.684

intron 5 (54419206) C>T T allele 0.598

intron 5 (54419150) C>T T allele 3.48 <0.001

rs10130587 C>G G allele 0.926

rs35107139 T>G G allele 0.953

rs2761880 A>G G allele 0.221

rs74486266 T>C C allele 0.861

rs17563 C>T T allele 2.22 <0.001

rs76335800 A>T T allele 1.99 <0.001

3’-UTR (54416600) A>T T allele 0.190

rs11335370 T>- deletion 0.608

intron 6 (54416219) C>T T allele 0.344

rs59702220 TT>- deletion 0.220

Haplotype TGGGCTT 2.54 <0.001

Wang et al.
(2013) [25] China 499 CSM 602 Age, sex, BMI Clinical

−5826G>A A allele 0.214

6007C>T T allele 0.51 <0.001
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Table 1. Cont.

Candidate
Gene

Papers
Investigating

Study
Population

Location

No. of
Patients

No. of
Controls Matching of Controls

Radiological or
Clinical Onset of

DCM
Proposed Mechanism Odds Ratio

(Susceptibility)
p-Value

(Susceptibility)

BMP9
Ren et al.

(2012)b [26] China 450 OPLL 550

Age, sex, BMI, bone mineral
density, exercise level,

sleeping habit, smoking
status, alcohol consumption.

Radiological

rs3758496 0.301

rs12252199 0.233

rs7923671 0.163

rs75024165 1.82 <0.001

rs34379100 1.95 0.003

rs9421799 0.69 0.004

Haplotype CTCA 2.37 <0.001

BMPR1A
Wang et al.
(2018) [27] China 356 OPLL 617 Age, sex Radiological

−349C>T T allele <0.001

4A>C C allele <0.001

1327C>T T allele 0.311

1395G>C 0.586
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Table 1. Cont.

Candidate
Gene

Papers
Investigating

Study Population
Location No. of Patients No. of

Controls Matching of Controls Radiological or Clinical
Onset of DCM Proposed Mechanism Odds Ratio

(Susceptibility)
p-Value

(Susceptibility)

COL6A1

Tanaka et al.
(2003) [28]

Japan 342 298 Age Radiological

rs7671 G>C allele 0.020

rs2072699 G>A allele 0.958

intron 2 (+758) C allele 0.019

rs760437 C>T allele 0.435

rs754507 A>C allele 0.062

intron 4 (+20) C allele 0.267

intron 4 (+37) G allele 0.010

rs2839076 G>C allele 0.043

intron 9 (+62) C allele 0.007

rs2277813 C>G allele 0.057

rs2277814 G>A allele 0.205

rs1980982 T>C allele 0.0008

intron 15 (+39) T allele 0.008

rs760439 G>A allele 0.048

rs2850173 C>A allele 0.053

rs2075893 T>C allele 0.021

rs2742071 T>C allele 0.219

rs2850174 T>G allele 0.238

rs2850175 A>C allele 0.001

rs2839077 C>T allele 0.005

rs2276254 A>C allele 0.00009

rs2276255 A>G allele 0.048

rs2276256 G>C allele 0.504

Intron 32 (-29) C allele 0.000003

rs2236485 G>A allele 0.0002

rs2236486 A>G allele 0.00005

rs2236487 A>G allele 0.00006

rs2236488 C>T allele 0.020

rs1053312 G>A allele 0.044

rs1053315 G>A allele 0.040

exon 35 (+205) T allele 0.677

rs1053320 C>T allele 0.021

Kong et al.
(2007) [29] China

183 (90 OPLL, 61 OLF,
32 OPLL and OLF) 155 Sex Radiological Promoter (−572) T allele 2.94 0.00003

intron 32 (-29) C allele 1.89 0.004

Liu et al.
(2010) [20] China

82 (48 OPLL, 12 OLF,
22 both) 118 Age, sex Radiological rs9978314 T allele 0.7618

rs2276255 G allele 0.7354

Kim et al.
(2014) [22] South Korea 110 OPLL 211 No. Controls were family

members
Radiological Promoter (−572) T allele 0.282

intron 33 (+20) G allele 0.625



J. Clin. Med. 2020, 9, 282 9 of 30

Table 1. Cont.

Candidate
Gene

Papers
Investigating

Study
Population

Location

No. of
Patients

No. of
Controls Matching of Controls

Radiological or
Clinical Onset of

DCM
Proposed Mechanism Odds Ratio

(Susceptibility)
p-Value

(Susceptibility)

COL9A2
Wang et al.
(2012) [30] China 172 CSM 176 Age, sex, BMI Clinical

Trp2+ allele 1.78 0.048

Trp3+ allele 0.087

COL11A2

Koga et al.
(1998) [31]

Japan

124 paired
siblings,

137 OPLL
patients

212 No Clinical

Promoter (−182) C allele 0.0240

intron 6 (−4) T allele 0.0004

exon 43 (+24) G allele 0.0210

exon 46 (+18) T allele 0.0333

Maeda et al.
(2001) [32]

Japan 195 OPLL 187 No Radiological intron 6 (−4) T allele 1.99 0.0003

exon 6 (+28) G allele 1.84 0.0012

Horikoshi et al.
(2006) [33]

Japan 711 OPLL 896 Age Clinical
rs9277933 (IVS6-4T>A) 0.130

rs2071025 (IVS29+37C>T) 0.270

FGF2
Jun & Kim
(2012) [34] South Korea 157 OPLL 222 Age, sex Radiological

rs1476217 C allele 0.220

rs308395 G allele 0.580

rs3747676 T allele 0.100

FGFR1 Jun & Kim
(2012) [34] South Korea 157 OPLL 222 Age, sex Radiological rs13317 C allele 2 0.02

FGFR2
Jun & Kim
(2012) [34] South Korea 157 OPLL 222 Age, sex Radiological

rs755793 C allele 0.110

rs1047100 A allele 0.580

rs3135831 T allele 0.590

HIF1A
Wang et al.
(2014) [35] China 230 CSM 284 Age, sex, BMI Clinical

1772C>T T allele 0.760

1790G>A A allele 1.62 <0.001

IL15RA

Kim et al. (2011)
[36] South Korea 166 OPLL 230 Age, sex Radiological rs2296139 A allele 1.00

rs2228059 A allele 1.52 0.009

Guo et al. (2014)
[37] China 235 OPLL 250 Age Clinical

rs2296139 G allele 0.849

rs2228059 A allele 1.63 <0.001

IL18RAP
Diptiranhan et
al. (2019) [17] India 100 CSM 100 Clinical

rs1420106 >0.05

rs917997 >0.05

Leptin
receptor

Tahara et al.
(2005) [38] Japan 156 OPLL 93 Age Radiological A861G 0.669
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Table 1. Cont.

Candidate
Gene

Papers
Investigating

Study
Population

Location

No. of
Patients

No. of
Controls Matching of Controls

Radiological or
Clinical Onset of

DCM
Proposed Mechanism Odds Ratio

(Susceptibility)
p-Value

(Susceptibility)

NPPS

Nakamura et al.
(1999) [39] Japan 323 OPLL 332 Age Clinical IVS20–11delT 0.0029

Koshizuka et al.
(2002) [40] Japan 180 OPLL 265 Age, sex Clinical IVS15-14T>C 3.01 0.022

Tahara et al.
(2005) [38] Japan 156 OPLL 93 Age Radiological IVS20–11delT 0.512

Horikoshi et al.
(2006) [33] Japan 711 OPLL 896 Age Clinical IVS15-14T>C 0.320

He et al. (2013)
[41] China 95 OPLL 90 Age, sex Radiological

A533C 0.430

C973T <0.001

IVS15-14T>C 0.026

IVS20–11delT 0.093

OPG
Yu et al. (2018)

[42] China 494 CSM 515 Clinical
950T>C C allele <0.01

1181G>C C allele >0.05

163A>G G allele >0.05

OPN
Wu et al. (2014)

[43] China 187 CSM 233 Age, sex, BMI Clinical
−66T>G G allele 1.55 0.002

−156G/GG GG genotype 0.651

−443C/T C allele 0.580
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Table 1. Cont.

Candidate
Gene

Papers
Investigating

Study
Population

Location

No. of
Patients

No. of
Controls Matching of Controls

Radiological or
Clinical Onset of

DCM
Proposed Mechanism Odds Ratio

(Susceptibility)
p-Value

(Susceptibility)

RUNX2

Liu et al. (2010)
[20] China

82 (48
OPLL, 12
OLF, 22

both)

118 Age, sex Radiological

rs967588C>T T allele 0.1939

rs16873379 T>C C allele 0.169

rs1406846 T>A A allele 0.6646

rs3749863 A>C C allele 0.8637

rs6908650 G>A A allele 0.6362

rs1321075 C>A A allele 0.5255

rs2677108 T>C C allele 0.6657

rs16873437 G>T T allele 0.6387

rs7771889 C>G G allele 0.7854

rs12333172 C>T T allele 0.8128

rs9296459 A>G G allele 0.2542

Chang et al.
(2017) [44] China 80 OPLL 80

Age, sex, BMI, smoking
history, alcohol intake Clinical

rs967588C>T T allele 0.47 0.033

rs16873379 T>C C allele 0.48 0.033

rs1406846 T>A A allele 5.67 <0.001

rs3749863 A>C C allele 0.171

rs6908650 G>A A allele 0.959

rs1321075 C>A A allele 0.050

rs2677108 T>C C allele 0.295

TGFB1

Kamiya et al.
(2001) [45] Japan 46 OPLL 273 Age, BMI Radiological 869T>C CC genotype 4.5 0.0004

Horikoshi et al.
(2006) [33] Japan 711 OPLL 896 Age Clinical IVS2+114G>A A allele 0.330

Han et al. (2013)
[46] South Korea 98 OPLL 200 Age, sex Radiological 869T>C CC genotype 0.656

−509C>T TT genotype 0.931

TGFB3 Horikoshi et al.
(2006) [33] Japan 711 OPLL 896 Age Clinical IVS1-1284G>C CC genotype 1.46 0.044

TGFBR2
Jekarl et al.
(2013) [47] South Korea 21 OPLL 42 None mentioned. Radiological

445T>A A allele 2.81 0.007

571G>A A allele 8.73 0.024

1167C>T T allele 0.888
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Table 1. Cont.

Candidate
Gene

Papers
Investigating

Study
Population

Location

No. of
Patients

No. of
Controls Matching of Controls

Radiological or
Clinical Onset of

DCM
Proposed Mechanism Odds Ratio

(Susceptibility)
p-Value

(Susceptibility)

TLR5
Chung et al.
(2011) [48] South Korea 166 OPLL 231 Age, sex Radiological

rs2072493 G allele 0.457

rs57441714 C allele 0.457

rs5744168 T allele 0.543

VDBP Song et al.
(2018) [49] China 318 CSM 282 Age, sex, BMI, smoking Clinical Thr420Lys 0.973 0.834

VDR

Kobashi et al.
(2008) [50] Japan 63 OPLL 126 Age, sex Radiological FokI FF genotype 2.33 0.0073

Wang et al.
(2010) [51] China 154 CSM 156

Age, sex, BMI, desk work
time, smoking Clinical

FokI T allele >0.05

BsmI A allele >0.05

ApaI A allele 2.88 <0.001

TaqI C allele 4.67 <0.001

Liu et al. (2010)
[20] China

82 (48
OPLL, 12
OLF, 22

both)

118 Age, sex Radiological

rs11168287 G allele 0.5933

rs11574079 A allele 2.68 0.0714

rs2189480 C allele 0.4197

rs3847987 C allele 0.6687

rs12721370 T allele 0.4000

Song et al.
(2018) [49] China 318 CSM 282 Age, sex, BMI, smoking Clinical FokI FF genotype 1.461 0.001

VKORC1 Chin et al.
(2013) [52] South Korea 98 OPLL 200 Age, sex, hypertension,

diabetes mellitus Radiological −1639G>A GA genotype 5.22 (female
patients only)

0.004
(Non-significant
in male/mixed)
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3.1.1. Spinal Pathology

The majority of studies investigating the genetics of susceptibility to DCM used the radiological
definition of cases. Therefore, these studies assess the development of bony spinal pathology (an initial
stage in overall DCM development).

Kim et al. (2014) investigated the ACE gene, finding the deletion/deletion genotype of the intron
16 polymorphism (rs4646994) to be associated with an increased risk of developing radiological OPLL
(AOR 2.20, p = 0.002) [15]. Similarly, two SNPs of the BID gene (rs8190315, rs2072392) were associated
with the development of OPLL (OR 2.66, p = 0.005 for both) [18].

Four studies have investigated the role of variants in BMP2. Wang et al. (2008) found no
significant effect of the Ser87Ser SNP, but found the Ser37Ala SNP was associated with an increased
risk of OPLL development (p < 0.001) [19]. Interestingly, however, patients with the GG genotype of
Ser87Ser had significantly greater number of ossified vertebrae, which suggested the A allele restricts
ectopic ossification in OPLL. Meanwhile, the Ser37Ala SNP had no significant effect on the number of
ossified vertebrae.

Yan et al. (2013) also found the Ser37Ala SNP to be associated with increased risk (p < 0.001) [21],
although a more recent study that compared OPLL patients to their family members found no effect
of either the Ser87Ser or Ser37Ala SNPs on risk of OPLL (p = 0.411, p = 0.670, respectively) [22].
Additionally, the 570A>T SNP in the BMP2 gene was not found to be significantly associated with
risk of OPLL [21]. Liu et al. (2010) used a patient cohort that included OPLL, OLF, and OPLL + OLF
patients, but found no effect of the rs1005464 intronic SNP on the susceptibility of radiological DCM
development [20].

In the BMP4 gene, the 6007C>T SNP was found to be associated with an increased risk of
developing radiological OPLL in male patients (OR 1.57, p = 0.014), although the effect is lost
when males and females are considered together (p = 0.493) [23]. In the same SNP, the CT and TT
genotypes were associated with a greater number of ossified vertebrae (p = 0.043) [23], as was a
haplotype (TGGGCTT) containing seven SNPs (p = 0.002). Ren et al. (2012a) identified three SNPs that
significantly increase the risk of OPLL: rs54419150 (OR 3.48, p < 0.001), rs17563 (OR 2.22, p < 0.001),
and rs76335800 (OR 1.99, p < 0.001). Linkage disequilibrium studies also identified the haplotype block
TGGGCTT containing these three SNPs to be significantly associated with the occurrence of OPLL
(OR 2.54, p < 0.001) [24].

In the BMP9 gene, two SNPs and a haplotype containing four SNPs were found to be associated
with an increased risk of OPLL development: rs75024165 (OR 1.82, p < 0.001), rs34379100 (OR 1.95,
p = 0.003), and haplotype CTCA (OR 2.37, p < 0.001). The haplotype was also associated with
development of a greater number of ossified vertebrae (p = 0.001). A further SNP (rs9421799) was
found to be protective (OR 0.69, p = 0.004), while three SNPs had no significant effect [26].

Wang et al. (2018) investigated the BMPR1A gene, finding two SNPs (-349C>T, 4A>C) that were
associated with an increased risk of OPLL development (p < 0.001 both), and two (1327C>T, 1395G>C)
with no significant effect [27]. Furthermore, patients with the C allele of the 4A>C SNP were more
likely to have a greater number of ossified vertebrae on lateral cervical radiograph (p < 0.001).

The COL6A1 gene has been the subject of four studies. Tanaka et al. (2003) investigated 32 SNPs
in the COL6A1 gene, of which 21 were significantly associated with OPLL (see Table 1) [28]. Further
work by Kong et al. (2007) was consistent with these findings, with intron 32 (-29) C allele conferring a
greater risk of OPLL (OR 1.89, p = 0.004) [29]. However, Liu et al. (2010) reported no significant effect of
the rs2276255 SNP on the risk of OPLL or OLF development [20], in contrast to Tanaka et al.’s finding
of a weak significant effect (p = 0.048). Further contradiction in the COL6A1 gene is seen in Kong et
al.’s (2007) finding that the promoter (−572) SNP T allele was associated with a 2.94 times greater risk
of OPLL (p = 0.0003), while Kim et al. (2014) found no significant effect (p = 0.282) [22]. Liu et al. (2010)
found no effect of one additional SNP (rs9978314) on the risk of OPLL or OLF development [20].
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In the COL11A2 gene, the intron 6 (−4) polymorphism was associated with a greater risk of
OPLL development in two studies (OR 1.99, p = 0.0003; p = 0.0004) [31,32]. Similarly, the exon 6 (+28)
polymorphism was associated with an odds ratio of 1.84 of developing OPLL (p = 0.0012) [32].

Jun & Kim (2012) investigated the FGF2, FGFR1, and FGFR2 genes in 157 OPLL patients and 222
age- and sex-matched controls [34]. Three SNPs of the FGF2 gene showed no significant effect on the
likelihood of OPLL development, as did three SNPs of the FGFR2 gene. However, the rs13317 SNP in
the FGFR1 gene was associated with an increased risk (OR 2.0, p = 0.02).

Kim et al. (2011) investigated two SNPs of the IL15RA (IL15Rα) gene [36]. The A allele of
rs2228059 conferred a 1.52 times risk of radiological OPLL (p = 0.009), while the rs2296139 SNP had no
significant effect.

The A861G polymorphism of the leptin receptor gene had no effect on the likelihood of OPLL
development in a study of 156 OPLL patients and 93 age-matched controls [38].

In the NPPS gene, two studies both found no significant effect of the IVS20-11delT SNP on the
likelihood of radiological OPLL (p = 0.512, p = 0.093) [38,41]. However, patients that were homozygous
for the T deletion of the IVS20-11delT polymorphism had fewer ossified vertebrae and less thick
ossification of their cervical vertebrae (p < 0.001 for both) [41].

The IVS15-14T>C and C973T SNPs were associated with an increased risk of radiological OPLL
(p = 0.026, p < 0.001) [41]. Furthermore, patients with the T allele of the IVS15-14T>C SNP also had both
a greater number of ossified vertebrae and greater thickness of ossification of their vertebrae (p < 0.001,
p = 0.017, respectively). For the C973T SNP, the T allele was associated with increased thickness of
ossified vertebrae (p = 0.007), but it had no effect on number of ossified vertebrae (p = 0.248). There
was no effect of the A533C polymorphism on the likelihood of radiological OPLL development, or
number of ossified vertebrae, or thickness of ossified vertebrae (p = 0.430, p = 0.363, p = 0.947) [41].

In a case-control study of OPLL, OLF, and OPLL+OLF patients, 11 SNPs of the RUNX2 gene had
no significant association with radiological development of OPLL/OLF [20]. However, patients with
the C allele of the rs16873379 SNP had a greater number of ossified vertebrae (p = 0.001), as did patients
with the A allele of the rs1406846 SNP (p = 0.020), and patients with the C allele of the rs2677108 SNP
(p = 0.044).

In the TGFB1 (TGFβ1) gene, the CC genotype of the 869T>C polymorphism was found to be
associated with an increased risk of radiological OPLL development in one study (OR 4.5, p = 0.0004) [45],
but it had no such association in a recent study that involved almost double the number of cases
(p = 0.656) [46]. On meta-analysis, there was no significant effect of the 869T>C polymorphism on the
susceptibility to OPLL development (OR 1.50, 95% CI 0.97–2.32, p = 0.07; Figure 2). The 509C>T was
found to have no association with radiological OPLL development [46].
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Jekarl et al. (2013) investigated three SNPs of the TGFBR2 (TGFβR2) gene, finding that two were
associated with increased likelihood of OPLL development. The 445T>A polymorphism conferred a
2.81 times increased risk (p = 0.007), while the 571G>A polymorphism was associated with 8.73 times
risk (p = 0.024) [47].

The TLR5 gene has been investigated by one study, which found no association of three SNPs
with the likelihood of OPLL development [48].
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In the VDR gene, Kobashi et al. (2008) found the FokI polymorphism to be associated with 2.33
times increased risk of OPLL development (p = 0.0073) [50]. Similarly, Liu et al. (2010) found an
association between the rs11574079 polymorphism and OPLL/OLF risk (OR 2.68, p = 0.0714) [20].

The VKORC1 gene was investigated in 98 OPLL patients and 200 control subjects, with the
−1639G> A polymorphism having a significant effect in female patients (OR 5.22, p = 0.004), but not
when both sexes were considered together (p > 0.05) [52].

In the NPPS gene, He et al. (2013) examined the effect of four SNPs on the progression of OPLL
ossification on lateral radiograph. The AA genotype of the A533C SNP and the homozygous T deletion
genotype of the IVS20-11delT SNP were both associated with better responses to surgical intervention
(OR 3.11, p = 0.029; OR 3.35, p = 0.007). The other two polymorphisms were not associated with any
difference in response to surgery (good response defined as <2 mm increase in ossified mass of the
posterior longitudinal ligament) [41].

3.1.2. Spinal Cord Pathology

Multiple studies used clinical signs and symptoms of DCM alongside positive radiological
findings. Such combination interrogates the development of cord pathology, rather than simply the
development of spinal pathology.

In the APOE gene, the ε4 allele was found to be associated with an increased risk of myelopathy
in a case-control study, where the controls had cervical spondylosis without myelopathy (OR 3.50,
p = 0.008) [16]. However, a study in an Indian population found the ε2 allele to be associated with
increased risk of myelopathy when compared to both the ε3 and ε4 alleles (OR 4.4, p = 0.002; OR 6.69,
p = 0.009) [17].

In the BMP4 gene, Wang et al. (2013) found the 6007C>T SNP to be protective for the development
of clinical signs and symptoms of CSM (OR 0.51, p < 0.001) [25]. This is in contradiction to the evidence
described above, in which this SNP was shown to be associated with an increased risk of radiological
OPLL development [23,24].

The Trp2(+) allele of the COL9A2 gene was associated with an increased risk of CSM development
(OR 1.78, p = 0.048), a risk that was worsened by heavy smoking (OR 5.56, p < 0.001), while the Trp3
allele had no significant effect [30].

Koga et al. (1998) identified three polymorphisms of the COL11A2 gene associated with DCM
development: promoter (−182), exon 43 (+24) and exon 46 (+18) [31]. Horikoshi and colleagues
investigated two additional SNPs of the COL11A2 gene, but found no significant effect for either [33].

In the HIF1A (HIF-1α) gene, Wang et al. (2014) found no effect of the 1772C>T SNP, while
the 1790G>A polymorphism was associated with an increased risk of CSM development (OR 1.62,
p < 0.001) [35].

In the IL15RA gene, Guo et al. (2014) found a significant effect of the A allele of the rs2228059 SNP
on DCM development (OR 1.63, p < 0.001) [37]. However, there was no effect of the rs2296139 SNP on
the likelihood of developing symptomatic DCM. This is in commonality with the above findings of
Kim et al. (2011) who showed rs2296139 had no effect on likelihood of developing radiological OPLL
while the rs2228059 SNP did [36].

In the IL18RAP gene, Diptiranhan et al. (2019) found no significant effect of either the rs1420106
or rs917997 SNPs on the development of myelopathy (p > 0.05) [17].

Three studies have looked at the NPPS gene in relation to clinical onset of spinal cprd
disease [33,39,40]. Nakamura et al. (1999) found the IVS20-11delT polymorphism to be associated
with an increased risk of development of DCM (p = 0.0029) [39]. There is conflicting evidence of the
effect of the IVS15-14T>C polymorphism: one study found it to be associated with a 3.01 times risk of
myelopathy development (p = 0.022) [40], while another found no significant effect (p = 0.320) [33].

Yu et al. (2018) found no significant effect of the 1181G>C and 163A>G polymorphisms in the
osteoprotegerin (OPG) gene, but found the C allele of the 950T>C SNP to be associated with a greater
risk of myelopathy (p < 0.01) [42].
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Wu et al. (2014) studied three SNPs of the osteopontin (OPN) gene [43]. Two showed no significant
effect, but the G allele of the -66T>G SNP was associated with an odds ratio of 1.55 of clinical onset of
DCM (p = 0.002).

In the RUNX2 gene, Chang et al. (2017) found the SNPs rs967588 and rs16873379 to be protective
for DCM development (OR 0.47, p = 0.033; OR 0.48, p = 0.033) [44]. The rs1406846 SNP was, on the
other hand, strongly associated with DCM development (OR 5.67, p < 0.001). Four further SNPs had
no significant effect.

Horikoshi et al. (2006) studied the TGFB1 (TGFβ1) and TGFB3 (TGFβ3) genes [33]. There was no
significant effect of the IVS2+114G>A SNP of TGFB1, while the CC genotype IVS1-1284G>C SNP of
TGFB3 was associated with an increased risk of DCM development (OR 1.46, p = 0.044).

Song et al. (2018) found no significant effect of the Thr20Lys polymorphism of the VDBP gene
(OR 0.973, p = 0.834) [49].

In the VDR gene, Wang et al. (2010) found no significant effect of FokI polymorphism on CSM
risk [51]. The BsmI polymorphism also had no effect on CSM risk, but the ApaI and TaqI polymorphisms
conferred a 2.88 times and 4.67 times increased CSM risk (both p < 0.001). In opposition to Wang et al.’s
findings, Song et al. (2018) found the ff genotype of the FokI polymorphism to be associated with a
1.985 times greater risk of myelopathy (p = 0.003) [49].

3.2. What Are the Genetic Effects on Clinical Severity of DCM?

Seven studies investigated the genetic effects on the clinical severity of DCM, while 11 investigated
radiological severity (four studies investigated both). Polymorphisms of 8 genes affected radiological
severity, while three genes affected clinical severity. Table 2 presents the full results.
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Table 2. Radiological or clinical severity of DCM.

Candidate
Gene

Papers
Investigating

Study Population
Location No of Patients Method of Severity Assessment Proposed

Mechanism Outcome

BDNF Abode-Iyamah
et al. (2016) [53] USA 10 CSM Short Form 36 Survey Val66Met

mutation

Met allele subjects had worse scores for physical functioning and
social functioning (p < 0.05). Met allele subjects had worse ‘physical

health summary’ scores (p = 0.02).

BMP2
Wang et al.
(2008) [19] China 57 OPLL

Number of ossified vertebrae on lateral
cervical radiograph (1–7)

Ser87Ser GG
genotype

Patients with GG genotype had significantly greater number of
ossified vertebrae (p < 0.001)

Ser37Ala GG
genotype No significant difference in number of ossified vertebrae (p = 0.113)

BMP4
Meng et al.
(2010) [23] China 179 OPLL

Number of ossified vertebrae on lateral
cervical radiograph/CT/MRI (1–7)

−5826G>A A
allele No significant difference in number of ossified vertebrae (p = 0.324)

6007C>T T allele Patients with T allele had significantly greater number of ossified
vertebrae (p = 0.043)

Ren et al.
(2012)a [24] China 450 OPLL Number of ossified vertebrae on lateral

cervical radiograph/CT (1–7)
Haplotype
TGGGCTT

Patients with the TGGGCTT haplotype had significantly greater
number of ossified vertebrae (p = 0.002)

BMP9 Ren et al.
(2012)b [26] China 450 OPLL Number of ossified vertebrae on lateral

cervical radiograph/CT (1–7) Haplotype CTCA Patients with the CTCA haplotype had significantly greater number of
ossified vertebrae (p = 0.001)

BMPR1A Wang et al.
(2018) [27] China 356 OPLL Number of ossified vertebrae on lateral

cervical radiograph (1–7) 4A>C C allele Patients with C allele had significantly greater number of ossified
vertebrae (p < 0.001)

HIF1A
Wang et al.
(2014) [35] China 230 CSM mJOA score 1772C>T T allele No significant difference in mJOA score (p > 0.05)

1790G>A A allele Patients with A allele had significantly worse mJOA scores (p < 0.001)

NPPS
He et al. (2013)

[41] China 95 OPLL

Number of ossified vertebrae on lateral
cervical radiograph (1–7)

A533C No significant difference in number of ossified vertebrae (p = 0.363)

C973T No significant difference in number of ossified vertebrae (p = 0.248)

IVS15-14T>C Patients with T allele had significantly greater number of ossified
vertebrae (p < 0.001)

IVS20–11delT Patients homozygous for the T deletion had significantly fewer
ossified vertebrae (p < 0.001)

Ossified thickness of cervical vertebrae
on lateral radiograph

A533C No significant difference in ossified thickness of cervical vertebrae (p =
0.947)

C973T Patients with T allele had significantly thicker ossification of cervical
vertebrae (p = 0.007)

IVS15-14T>C Patients with T alelle had significantly thicker ossification of cervical
vertebrae (p = 0.017)

IVS20–11delT Patients homozygous for the T deletion had significantly less thick
ossification of cervical vertebrae (p < 0.001)

OPG Yu et al. (2018)
[42] China 494 CSM mJOA score and number of ossified

vertebrae 950T>C TT genotype associated with higher mJOA scores and fewer ossified
cervical vertebrae (p < 0.05).
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Table 2. Cont.

Candidate
Gene

Papers
Investigating

Study Population
Location No of Patients Method of Severity Assessment Proposed

Mechanism Outcome

OPN
Wu et al. (2014)

[43] China 187 CSM mJOA score
−66T>G G allele No significant difference in mJOA score (p > 0.05)

−156G/GG GG
genotype No significant difference in mJOA score (p > 0.05)

−443C/T C allele No significant difference in mJOA score (p > 0.05)

RUNX2
Chang et al.
(2017) [44] China 80 OPLL

Number of ossified vertebrae on
CT/MRI (1–7)

rs967588C>T T
allele No significant difference in number of ossified vertebrae (p = 0.784)

rs16873379 T>C C
allele

Patients with C allele had significantly greater number of ossified
vertebrae (p = 0.001)

rs3749863 A>C C
allele No significant difference in number of ossified vertebrae (p = 0.129)

rs6908650 G>A A
allele No significant difference in number of ossified vertebrae (p = 0.813)

rs1321075 C>A A
allele No significant difference in number of ossified vertebrae (p = 0.610)

rs1406846 T>A A
allele

Patients with A allele had significantly greater number of ossified
vertebrae (p = 0.020)

rs2677108 T>C C
allele

Patients with C allele had significantly greater number of ossified
vertebrae (p = 0.044)

VDBP
Song et al.
(2018) [49] China 318 CSM

mJOA score Thr420Lys No significant difference in mJOA score (p = 0.546)

Number of ossified vertebrae Thr420Lys No significant difference in number of ossified vertebrae (p = 0.117)

VDR

Wang et al.
(2010) [51] China 154 CSM

Number of segmental lesions on MRI

FokI T allele No significant difference in mean number of segmental lesions
(p > 0.05)

BsmI A allele No significant difference in mean number of segmental lesions
(p > 0.05)

ApaI A allele No significant difference in mean number of segmental lesions
(p > 0.05)

TaqI C allele No significant difference in mean number of segmental lesions
(p > 0.05)

mJOA score

FokI T allele No significant difference in mJOA score (p > 0.05)

BsmI A allele No significant difference in mJOA score (p > 0.05)

ApaI A allele No significant difference in mJOA score (p > 0.05)

TaqI C allele No significant difference in mJOA score (p > 0.05)

Song et al.
(2018) [49] China 318 CSM

mJOA score FokI ff genotype No significant difference in mJOA score (p = 0.358)

Number of ossified vertebrae FokI ff genotype No significant difference in number of ossified vertebrae (p = 0.575)
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CSM patients with the Val66Met polymorphism of the BDNF gene had more severe disease,
as assessed by functional survey: worse SF-36 scores for physical functioning and physical health
summary than their counterparts without the polymorphism (p < 0.05) [53].

Wang et al. (2014) studied the effect of two polymorphisms of the HIF1A gene on CSM: 1772C>T
and 1790G>A [35]. While the former conferred no significant difference in mJOA score, in the latter
patients with the A allele had significantly worse mJOA scores than their G allele counterparts
(p < 0.001).

Yu et al. (2018) found the TT genotype of the 950T>C polymorphism in the OPG gene to be
associated with higher mJOA scores and fewer ossified vertebrae (p < 0.05); the TT genotype appears
to be protective [42].

Wu et al. (2014) investigated four polymorphisms of the OPN gene in 187 CSM patients, finding
no significant difference of all four polymorphisms on the mJOA score [43].

There was no effect of the Thr420Lys polymorphism of the VDBP gene on mJOA score or the
number of ossified segments in 318 CSM patients [49]. Similarly, four polymorphisms of the VDR gene
(FokI, BsmI, ApaI, TaqI) were found to have no significant effect on mJOA score in two studies [49,51].

3.3. What Are the Genetic Effects on Response to Surgery in DCM?

The polymorphisms of five genes were associated with clinical response to surgery in DCM:
APOE, BMP4, HIF1A, OPN, and RUNX2. The NPPS gene was studied for radiological response to
surgery. Table 3 presents the results.

In the APOE gene, the ε4 allele was associated with an increased risk of poor response to ACDF
surgery. In a multivariate model, it was associated with an 8.6 times risk of worsening or no change in
mJOA score (p = 0.004) [54].

The 6007C>T polymorphism of the BMP4 gene was associated with greater likelihood of
post-surgical improvement of mJOA score (OR 1.53, p = 0.002), but the -5826G>A polymorphism had
no significant effect (p = 0.053) [25].

In the HIF1A gene, the 1790G>A polymorphism was also associated with a greater likelihood of
post-surgical improvement of the mJOA score (OR 1.55, p = 0.024) [35].

In the OPN gene, the GG genotype of the −66T>G SNP was found to be associated with worse
response to surgical intervention, as assessed by mJOA score (OR 3.62, p = 0.007) [43]. Good surgical
response was defined as >50% improvement in mJOA score.

Seven polymorphisms of the RUNX2 gene were investigated for their effect on pre- vs. post-surgical
mJOA score. The patients with the CC genotype of the rs16873379 SNP improved less (52.4%) than
patients with TT genotype (61.7%), an effect that is mirrored by patients with the AA genotype of
the rs1406846 SNP and patients with the CC genotype of the rs2677108 SNP. Patients with the AA
genotype of the rs6908650 SNP improved more (66.8%) than their counterparts with the GG genotype
(57.4%). The three other polymorphisms had no significant effect on mJOA score improvement [44].

In the NPPS gene, the AA genotype of the A533C polymorphism was associated with a 3.11 times
greater likelihood of radiological improvement after surgical intervention. Similarly the IVS20-11delT
homozygous T deletion was associated with a 3.35 greater likelihood of improvement. For both
polymorphisms, improvement was defined as an increase of <2 mm in the ossified mass of the posterior
longitudinal ligament over a mean follow-up length of 3.1 years [41].
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Table 3. Response to surgery in DCM.

Candidate
Gene

Papers
Investigating

Study
Population

Location

Number of
Patients Surgery Type Mean

Follow-Up

Method of
Assessment of

Response to Surgery

Improvement
Defined As Proposed Mechanism Odds Ratio of No

Improvement
Odds Ratio of
Improvement p-Value

APOE Setzer et al.
(2009) [54] Germany 60 CSM ACDF 18.8

months mJOA score mJOA score +1 ε4 allele
3.3 (8.6 in

multivariate
model)

-
0.002 (0.004
multivariate

model)

BMP4
Wang et al.
(2013) [25] China 499 CSM

Anterior cervical
corpectomy and

fusion

12 months mJOA score >50% improvement in
mJOA score

−5826G>A A allele - - 0.053

6007C>T T allele - 1.53 0.002

HIF1A Wang et al.
(2014) [35] China 230 CSM

Anterior cervical
corpectomy and

fusion
24 months mJOA score >50% improvement in

mJOA score 1790G>A A allele - 1.55 0.024

NPPS
He et al.

(2013) [41] China 95 OPLL 3.1 years
Progression of OPLL
ossification on lateral

radiograph

<2 mm increase in
ossified mass of PLL

A533C AA genotype - 3.11 0.029

C973T - - 0.935

IVS15-14T>C - - 0.836

IVS20–11delT
homozygous T deletion - 3.35 0.007

OPN Wu et al.
(2014) [43] China 187 CSM

Anterior cervical
corpectomy and

fusion
24 months mJOA score >50% improvement in

mJOA score −66T>G GG genotype 3.62 - 0.007

RUNX2
Chang et al.
(2017) [44] China 80 OPLL Laminoplasty 12 months mJOA score % improvement in

mJOA score

rs967588C>T T allele - - >0.05

rs16873379 T>C C allele - - <0.05

rs3749863 A>C C allele - - >0.05

rs6908650 G>A A allele - - <0.05

rs1321075 C>A A allele - - >0.05

rs1406846 T>A A allele - - <0.05

rs2677108 T>C C allele - - <0.05
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4. Discussion

The aim of this study was to critically appraise the current evidence on the genetic contribution to
DCM, with specific focus on distinguishing spinal column disease from spinal cord disease. Studies
were identified evaluating the susceptibility, severity, and responsiveness to surgery in DCM. Studies
on spinal column disease focused on the radiological outcomes of OPLL. Evidence was identified for a
number of genes, including many in the TGFβ superfamily and many known to be associated with
bone development.

By further focusing on studies evaluating relationships with clinical function, versus radiological
measures, a shortlist of genes that were related to spinal column disease or ‘myelopathy’ and not
‘spondylosis’ was identified: specifically, 12 genes that were associated with susceptibility, three genes
with clinical severity, and five genes with response to surgical intervention. Table 4 presents a summary
of the evidence for genetic effects on ‘myelopathy’, including GRADE rating for each gene. Across the
three focuses of this review (susceptibility, severity, response to surgery), the GRADE rating of quality
of evidence is baseline low, as all studies are observational. For all three, the quality of evidence is
upgraded due to the large effects across genes, but downgraded due to inconsistency between studies.
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Table 4. Summary of candidate genes affecting myelopathy (i.e., clinical onset/severity/response to surgery rather than radiological). Colour coded for evidence level
(green: unconflicted evidence, amber: conflicting evidence, red: no evidence or not yet investigated). GRADE rating of quality of evidence given for each candidate
gene—baseline quality low (all observational studies); gene-specific upgrade/downgrade comments in parentheses.

Candidate Gene Papers Investigating Susceptibility to Myelopathy Severity of Myelopathy Post-Operative Response GRADE Rating

APOE
Setzer et al. (2008) [16]
Setzer et al. (2009) [54] ε4 allele: OR 3.50, p = 0.008

ε4 allele: OR of no improvement
3.3 (8.6 in multivariate model), p

= 0.002 (p = 0.004)
Low

(small sample size, inconsistency
across ethnicities)Diptiranhan et al. (2019) ε2 allele: OR 6.69, p = 0.009

BDNF Abode-Iyamah et al. (2016)
[53]

Val66Met: Met allele subjects had
worse scores for physical

functioning (p < 0.05), social
functioning (p < 0.05 and

‘physical health summary’ (p =
0.02) on SF-36 survey.

Low
(single study, very small sample

size)

BMP4 Wang et al. (2013) [25] 6007C>T T allele: OR 0.51, p < 0.001 6007C>T T allele: OR of
improvement 1.53, p = 0.002

Low
(inconsistency across studies,

inconsistency between CSM and
OPLL studies)

COL9A2 Wang et al. (2012) [30] Trp2+ allele: OR 1.78, p = 0.048 Low
(single study, small sample size)

COL11A2 Koga et al. (1998) [31]

Promoter (−182) C allele (p = 0.0240);
Intron 6 (−4) T allele (p = 0.0004);

Exon 43 (+24) G allele (p = 0.0210);
Exon 46 (+18) T allele (p = 0.0333)

Low

HIF1A Wang et al. (2014) [35] 1790G>A A allele: OR 1.62, p < 0.001 1790G>A A allele associated with
worse mJOA scores (p < 0.001)

1790G>A A allele: OR of
improvement 1.55, p = 0.024

Low
(single study)

IL15RA Guo et al. (2014) [37] rs2228059 A allele: OR 1.63, p < 0.001 Low

NPPS
Nakamura et al. (1999) [39] IVS20-11delT: p = 0.0029 Low

(inconsistency across studies)
Koshizuka et al. (2002) [40] IVS15-14T>C: OR 3.01, p = 0.022

NB. Horikoshi et al. (2006) find p = 0.320.

OPG Yu et al. (2018) [42] 950T>C C allele: p < 0.01
950T>C TT genotype associated

with higher mJOA scores and
fewer ossified vertebrae (p < 0.05)

Low
(single study)

OPN Wu et al. (2014) [43] −66T>G G allele: OR 1.55, p = 0.002 No significant difference in mJOA
score (p > 0.05).

-66T>G GG genotype: OR of no
improvement 3.62, p = 0.007

Low
(single study)

RUNX2 Chang et al. (2017) [44]
rs967588C>T T allele: OR 0.47, p = 0.033;

rs16873379T>C C allele: OR 0.48, p = 0.033;
rs1406846T>A A allele: OR 5.67, p < 0.001

rs16873379T>C C allele: p < 0.05;
rs6908650G>A A allele: p < 0.05;
rs1406846T>A A allele: p < 0.05;
rs2677108T>C C allele: p < 0.05

Low

TGFB3 Horikoshi et al. (2006) [33] IVS1-1284G>C CC genotype: OR 1.46, p = 0.044 Low
(single study)

VDR
Wang et al. (2010) [51] ApaI A allele: OR 2.88, p < 0.001;

TaqI C allele: OR 4.67, p < 0.001
No significant difference in mJOA

score (p > 0.05).
Low

(inconsistency across studies)

Song et al. (2018) [49] FokI ff genotype: OR 1.985, p = 0.003
No significant difference in mJOA

score or number of ossified
vertebrae (p > 0.05)
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4.1. Spinal Column Disease: Focus on OPLL

The greatest focus of research to date has been on the bone morphogenetic proteins, a group of
multifunctional growth factors that fall within the TGFβ superfamily and are involved in cartilage
development and the induction of bone formation [55]. Four genes within this family of growth
factors have been associated with both altered susceptibilities to bony spinal pathology and altered
susceptibility to the development of myelopathy: BMP2, BMP4, BMP9, and BMPR1A. The 4A>C
SNP in the BMPR1A gene is associated with a significantly greater likelihood of radiological OPLL
and a significantly greater number of ossified vertebrae [27]. Similarly, the CTCA haplotype of the
BMP9 gene is associated with a significantly increased risk of developing OPLL (OR 2.37), as well as
a greater number of ossified vertebrae [26]. In the BMP4 gene, a haplotype of 7 SNPs is associated
with both greater susceptibilities to OPLL and worse disease [24]. Moreover, the 6007C>T SNP in the
BMP4 gene is associated with not only greater likelihood of developing bony pathology and greater
severity of radiological disease, but also a greater likelihood of post-operative improvement of the
mJOA score [23,25].

The dual role of 6007C>T SNP in the BMP4 gene merits further discussion. The T allele of the
polymorphism was found to be protective for spinal cord disease [25] (AOR 0.51) and it was associated
with better outcomes in mJOA score after surgery (AOR 1.53 of being in the ‘improvement’ group).
Conversely, Meng et al. found the same T allele to be associated with a greater likelihood of radiological
OPLL (OR 1.57) [23]. The contrasting effect of the same allele suggests the effect of the BMP4 gene is
not limited to spinal pathology and the development of bony compression, but it may also influence
the spinal cord response to such compression. It is unclear whether this effect is due to an intrinsic
effect of BMP4 on CNS resilience or regeneration, or a treatment artifact that faster compression elicited
by the 6007C>T polymorphism giving more severe bony pathology results in faster decompression
and better post-operative outcomes. Nonetheless, it is clear that bone morphogenetic protein genes
may have extensive influences in the pathogenesis and symptoms of DCM.

Alongside the BMP genes, several other genes should be highlighted. In the NPPS gene, the C973T
polymorphism significantly affected both the susceptibility of OPLL development and the thickness of
ossified vertebrae, but notably did not affect the number of ossified vertebrae.

NPPS gene polymorphisms were implicated in post-surgical improvements of spinal column
disease affecting the thickness of ossified vertebrae (C973T), while others (IVS15-14T>C) affect the
number of ossified vertebrae and others affect both (IVS20-11delT) [41].

Evaluation of the network of genes that were found to be associated with the development of
spinal column pathology shows that, while each gene has an independent effect on susceptibility to
pathology, there is clear connectedness within and across gene families (Figure 3).
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4.2. Spinal Cord Disease

The ε4 allele of the APOE gene, an allele that is well known for its associations with both
cardiovascular disease and Alzheimer’s disease, was associated with both a significantly increased
likelihood of DCM development (OR 3.50) [16] and a significantly greater likelihood of failing to gain
post-operative improvement (AOR 8.60 no improvement) [54]. However, this effect might not be
universal across ethnicities; a study in an Indian population found the ε2 allele to be associated with
development of myelopathy (OR 6.69) [17].

The 1790G>A polymorphism of the HIF1A gene displayed the opposite effect: it was associated
with significantly greater likelihood of DCM development (OR 1.62), and worse disease but a greater
likelihood of post-surgical improvement (OR 1.55) [35].

Reductions in Hif1α expression have been shown to be associated with the neuroprotective
benefits of hyperbaric oxygen in spinal cord injury mouse models [56]. It is possible that such a
mechanism is also the mediator of the HIF1A polymorphism’s effect on susceptibility, severity, and
post-operative response in DCM.

The APOE gene and its product, the apolipoprotein E transporter, are well-known to be involved
remyelination, with defective clearance of myelin debris by the transporter limiting the potential for
remyelination [57]. In the case of both HIF1A and APOE, their effects appear to be directly exerted on
the cord’s response to bony pathology, rather than via the bony pathology itself.

There appears to be delineation between genetic factors contributing to the development of bony
pathology in the cervical spine, and those contributing to the CNS response to such insult. That an
SNP of brain-derived neurotrophic factor (BDNF) is associated with the severity of disability (i.e., CNS
response to insult) gives further weight to such a distinction [53].

As with genes that are associated with spinal pathology, the genes studied with relation to spinal
cord disease have independent, but connected, effects (Figure 4).
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4.3. Conflicting Evidence

The frequency of conflicting evidence is one striking aspect of much of the work reviewed here.
The best example of this is perhaps seen in the RUNX2 gene; the rs1406846 SNP A allele is associated
with 5.67 times greater likelihood of developing DCM in one study [44], but it has no significant
effect in a further study using a similar number of participants from the same country [20]. Similarly
the 869T>C SNP in the TGFB1 gene was associated with an odds ratio of 4.50 in one study [45],
but a larger, more recent study found no significant effect of the same allele [46], with the result of
meta-analysis showing no significant effect. Further examples of conflicting evidence include the
IVS20-11delT polymorphism of the NPPS gene, in which one study found a significant effect on
DCM susceptibility [39], but two others found no significant effect [38,41], while in the IVS15-14T>C
polymorphism, two studies found an effect on susceptibility [40,41], with a further study showing no
significant effect [33]. Such inconsistency might reflect the relatively small sample sizes of much of the
work described here, and it indicates the need for large, well powered genetic investigations.

4.4. Limitations of Current Work

Limitations of the current work on the genetics of DCM are multiple. Firstly, many of the studies
that were reviewed in this article scored poorly on the MINORS methodological items assessment [13].
None published information regarding prospective calculation of study size, few reported whether the
cases and controls were demographically matched, and some did not report how participants were
recruited (e.g., consecutively). As mentioned above, the sample sizes remain in the hundreds rather
than thousands, which limits the degree to which their conclusions can be considered valid. Moreover,
in reporting the results, many omit odds ratios, instead of reporting only p-values, which limits the
degree to which such results can be interpreted.

Many of the studies reviewed here focused exclusively on Japanese, Chinese, or South Korean
participants, and specifically OPLL. Interestingly, in the APOE gene ethnicity appears to result in
conflicting genetic effects, with the ε2 allele associated with myelopathy in Indian populations and
the ε4 allele associated with myelopathy in Chinese populations [16,17]. It is widely acknowledged
that there is a greater prevalence of OPLL within Asian populations, and this might explain their
disproportionate representation in the literature [1]. However, without further work across ethnicities,
it remains speculation as to whether the conclusions from these studies are globally relevant and across
the spectrum of DCM pathologies.

There is significant diversity in the assessment of disease severity between studies. One study used
the SF-36 quality of life survey [53], three used the mJOA score [35,43,51] (a clinical score commonly
used in DCM research [58–61]), while others used radiographic measures [19,23,24,26,27,41,44,51].
A similar situation is found within the literature while considering response to surgery, with one study
using a cut-off for ‘improvement’ as +1 point on mJOA score [54], some using >50% increase in mJOA
score [25,35,43], one using a t-test of % improvement on mJOA between homozygous groups [44], and
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one paper while using a radiographic definition of disease progression [41]. Such heterogeneity of
outcome measures limits the degree to which the effects of genes on severity of DCM and response to
surgery can be compared. The removal of surrogate outcome measures and more consistent use of
a single form of outcome measure would permit more readily comparable conclusions to be drawn
across different studies. We are currently undertaking RECODE DCM, an international consensus
process to standardize the reporting of data elements in DCM research, and this would clearly hold
benefit here (www.recode-dcm.com) [62]. For the reasons that are outlined above, the GRADE ratings
of quality of evidence for each candidate gene were ‘low’ across all genes.

4.5. Future Directions

It is clear that interest in this field is building, with increasing numbers of studies focusing on
genetic effects in DCM (Figure 5). However, more than half the that are genes reviewed here have
been investigated by only a single study, often with small sample sizes, which suggests more intensive
work in larger populations is required to further describe the genetic basis of DCM. Furthermore, all of
the studies included in this review focused on individual candidate genes. While some considered
the effects of haplotypes consisting of several SNPs within a single gene [24,26,29], no work has yet
combined SNPs across different genes. Such combinations may exhibit effect sizes of greater magnitude
than those in the current body of literature, with potential for such genetic profiles permitting greater
personalization of treatment strategies. Future work should also seek to characterize the mechanism
by which the genes that were reviewed here exert their effects in the pathobiology of DCM.
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5. Conclusions

While a number of limitations of the current work do exist, there is clear evidence of genetic effects
of single nucleotide polymorphisms and haplotypes in DCM. Some of the genes exert their influence
on the development of bony pathology, while others have effects on the spinal cord itself. Further
investigation of the genetic basis of DCM requires larger study sizes, using more consistent measures
of disease severity and response to surgery. The current evidence base is insufficient for translation to
clinical practice for use in prognostication and management, but the potential for genetic profiles to
be used in this way may well be realized once greater characterization of the genetic basis of DCM
is achieved.

www.recode-dcm.com
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