4,888 research outputs found

    Q-based design equations for resonant metamaterials and experimental validation

    Get PDF
    Practical design parameters of resonant metamaterials, such as loss tangent, are derived in terms of the quality factor QQ of the resonant effective medium permeability or permittivity. Through electromagnetic simulations of loop-based resonant particles, it is also shown that the QQ of the effective medium response is essentially equal to the QQ of an individual resonant particle. Thus, by measuring the QQ of a single fabricated metamaterial particle, the effective permeability or permittivity of a metamaterial can be calculated simply and accurately without requiring complex simulations, fabrication, or measurements. Experimental validation shows that the complex permeability analytically estimated from the measured QQ of a single fabricated self-resonant loop agrees with the complex permeability extracted from SS parameter measurements of a metamaterial slab to better than 20%. This QQ equivalence reduces the design of a metamaterial to meet a given loss constraint to the simpler problem of the design of a resonant particle to meet a specific QQ constraint. This analysis also yields simple analytical expressions for estimating the loss tangent of a planar loop magnetic metamaterial due to ohmic losses. It is shown that tan⁡ή≈0.001\tan \delta \approx 0.001 is a strong lower bound for magnetic loss tangents for frequencies not too far from 1 GHz. The ohmic loss of the metamaterial varies inversely with the electrical size of the metamaterial particle, indicating that there is a loss penalty for reducing the particle size at a fixed frequency

    High temperature ferromagnetism of Li-doped vanadium oxide nanotubes

    Full text link
    The nature of a puzzling high temperature ferromagnetism of doped mixed-valent vanadium oxide nanotubes reported earlier by Krusin-Elbaum et al., Nature 431 (2004) 672, has been addressed by static magnetization, muon spin relaxation, nuclear magnetic and electron spin resonance spectroscopy techniques. A precise control of the charge doping was achieved by electrochemical Li intercalation. We find that it provides excess electrons, thereby increasing the number of interacting magnetic vanadium sites, and, at a certain doping level, yields a ferromagnetic-like response persisting up to room temperature. Thus we confirm the surprising previous results on the samples prepared by a completely different intercalation method. Moreover our spectroscopic data provide first ample evidence for the bulk nature of the effect. In particular, they enable a conclusion that the Li nucleates superparamagnetic nanosize spin clusters around the intercalation site which are responsible for the unusual high temperature ferromagnetism of vanadium oxide nanotubes.Comment: with some amendments published in Europhysics Letters (EPL) 88 (2009) 57002; http://epljournal.edpsciences.or

    THE VALUATION OF THE ENTERPRISES AND PRODUCTS COMPETITIVENESS

    Get PDF
    The increase of the enterprise competitiveness in the enlarged European Union imposes, firstly, a good knowledge of the competitiveness factors and a pragmatic rigorous valuation of the competitiveness at the micro level (cluster, firm, business, and product), in correlation with the competitiveness at the macro level (continent, country, and region) and the mezzo level (county, zone, and locality). New concepts, models and methods have been analysed and developed in this field: the competitiveness typology; the competitiveness metaperformances (flexibility, value, liquidity, efficiency) and factors at the micro level; the competitive capacity of enterprises; integrated valuations of the competitiveness (value in the market/segment/niche, competitiveness profile, score)

    Do Search for Dibaryonic De - Excitations in Relativistic Nuclear Reactions

    Full text link
    Some odd characteristics are observed in the single particle distributions obtained from He+Li He + Li interactions at 4.5AGeV/c 4.5 AGeV/c momenta which are explained as the manifestation of a new mechanism of strangeness production via dibaryonic de-excitations. A signature of the formation of hadronic and baryonic clusters is also reported. The di-pionic signals of the dibaryonic orbital de-excitations are analyzed in the frame of the MIT - bag Model and a Monte Carlo simulation.The role played by the dibaryonic resonances in relativistic nuclear collisions could be a significant one. Key words: Relativistic nuclear interactions negative pions, negative kaons, di-pions , streamer chamber, dibaryons, MIT - bag model PACS codes: 25.75.+r,14.40.Aq,14.20.Pt,12.40.AsComment: 17 pages,LATEX, preprint ICTP -243 1993,figures available by reques

    The magnetoelectrochemical switch

    Get PDF
    In the field of spintronics, the archetype solid-state two-terminal device is the spin valve, where the resistance is controlled by the magnetization configuration. We show here how this concept of spin-dependent switch can be extended to magnetic electrodes in solution, by magnetic control of their chemical environment. Appropriate nanoscale design allows a huge enhancement of the magnetic force field experienced by paramagnetic molecular species in solutions, which changes between repulsive and attractive on changing the electrodes' magnetic orientations. Specifically, the field gradient force created within a sub-100-nm-sized nanogap separating two magnetic electrodes can be reversed by changing the orientation of the electrodes' magnetization relative to the current flowing between the electrodes. This can result in a breaking or making of an electric nanocontact, with a change of resistance by a factor of up to 103. The results reveal how an external field can impact chemical equilibrium in the vicinity of nanoscale magnetic circuits
    • 

    corecore