13 research outputs found

    Characterization of Weathering Processes of the Giant Copper Deposit of Tizert (Igherm Inlier, Anti-Atlas, Morocco)

    Get PDF
    The giant Tizert copper deposit is considered as the largest copper resource in the western Anti-Atlas (Morocco). The site is characterized by Cu mineralization carried by malachite, chalcocite, covellite, bornite and chalcopyrite; azurite is not observed. The host rocks are mainly limestones (Formation of Tamjout Dolomite) and sandstones/siltstones (Basal Series) of the Ediacaran/Cambrian transition. The supergene enrichment is most likely related to episodes of uplift/doming (last event since 30 Ma), which triggered the exhumation of primary/hypogene mineralization (chalcopyrite, pyrite, galena, chalcocite I and bornite I), generating their oxidation and the precipitation of secondary/supergene sulfides, carbonates and Fe-oxyhydroxides. The Tizert supergene deposit mainly consists of (i) a residual patchwork of laterite rich in Fe-oxyhydroxides; (ii) a saprolite rich in malachite, or “green oxide zone” where primary structures such as stratification are preserved; (iii) a cementation zone containing secondary sulfides (covellite, chalcocite II and bornite II). The abundance of Cu carbonates results from the rapid neutralization of acidic meteoric fluids, due to oxidation of primary sulfides, by carbonate host rocks. Chlorite is also involved in the neutralization processes in the sandstones/siltstones of the Basal Series, in which supergene clays, such as kaolinite and smectites, subsequently precipitated. At Tizert, as can be highlighted in other supergene Cu-deposits around the world, azurite is absent due to low pCO2 and relatively high pH conditions. In addition to copper, Ag enrichment is also observed in weathered rocks; Fe-oxyhydroxides contain high Zn, As, and Pb contents. However, these secondary enrichments are quite low compared to Cu in the whole Tizert site, which is therefore, considered as relatively homogeneous

    Experimental timing of pyrite oxidation under various leaching conditions:consequences for rates of weathering in geological profiles

    No full text
    Pyrite (FeS2) is one of the most abundant sulfides on Earth and has already been studied in numerous ways for decades because of its rapid oxidation and the associated environmental impacts. This study proposes a new experimental physico-chemical approach (air, tridistilled water and water drip exposure) to determine the oxidation rate of pyrite using surface and depth data via XPS (X-ray Photoelectron Spectroscopy) analyses. Our experimental study of almost pure pyrite reveals a maximum oxidation rate of 11.7 ± 1.8 nm day−1 for drip exposure with precipitation of sulfates or Fe-oxides depending on the experimental condition. The oxidation rates obtained under various experimental conditions may be extrapolated to weathering rates of different zones of supergene profiles/ores (leached zone, saprolite and cementation zone). The extrapolation suggests a maximum rate of 4.3 ± 0.6 m Ma−1, which is consistent with data obtained by isotope dating of weathering profiles. Under geological conditions however, the oxidation rate of pyrite may be influenced by additional parameters, such as the nature of the host rock, its porosity/permeability, the climate, the influence of an oxidizing environment, and the mineralization of secondary minerals.Pyrite (FeS 2) is one of the most abundant sulfides on Earth and has already been studied in numerous ways for decades because of its rapid oxidation and the associated environmental impacts. This study proposes a new experimental physico-chemical approach (air, tridistilled water and water drip exposure) to determine the oxidation rate of pyrite using surface and depth data via XPS (X-ray Photoelectron Spectroscopy) analyses. Our experimental study of almost pure pyrite reveals a maximum oxidation rate of 11.7 ± 1.8 nm day −1 for drip exposure with precipitation of sulfates or Fe-oxides depending on the experimental condition. The oxidation rates obtained under various experimental conditions may be extrapolated to weathering rates of different zones of supergene profiles/ores (leached zone, saprolite and cementation zone). The extrapolation suggests a maximum rate of 4.3 ± 0.6 m Ma −1, which is consistent with data obtained by isotope dating of weathering profiles. Under geological conditions however, the oxidation rate of pyrite may be influenced by additional parameters, such as the nature of the host rock, its porosity/permeability, the climate, the influence of an oxidizing environment, and the mineralization of secondary minerals.</p
    corecore