

RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Geochemistry of acid sulfate alteration in Panarea (Aeolian Islands, Italy)

Bouvart, Theo; Poot, Julien; Yans, Johan; Dekoninck, Augustin; SCHMIT, Flore; Keutgen de Greef, Maxime; Bernard, Alain

Publication date: 2023

Document Version Publisher's PDF, also known as Version of record

Link to publication

Citation for pulished version (HARVARD):

Bouvart, T, Poot, J, Yans, J, Dekoninck, A, SCHMIT, F, Keutgen de Greef, M & Bernard, A 2023, 'Geochemistry' of acid sulfate alteration in Panarea (Aeolian Islands, Italy)'.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Geochemistry of acid-sulfate alteration in Panarea (Aeolian Islands, Italy)

Théo Bouvart, Julien Poot, Augustin Dekoninck, Flore Schmit, Maxime Keutgen De Greef, Alain Bernard & Johan Yans

- Panarea is a partially emerged caldera.
- Protolith is calc-alkaline to high-K calc-alkaline andesite
 & dacite.
- La Calcara is an active steam-heated environment.
- Fluids typically originate from seawater, modified by complex interactions between boiling volcanic gases and meteoric water¹.
- Chemical composition and ³He/⁴He of Calcara suggest a magmatic system centered on Bottaro islet at relatively shallow depth². Both sites show synchronous variations suggesting a same deep feeding magmatic gas system^{2,3}.

Native sulfur

Ongoing Acid-sulfate alteration

Different alteration textures

<u>Mineralogy</u>

Fumarole

- Texture loss
- Silica, alunite, kaolinite

Geochemistry

- Close to protolith values
- Alunite is fractionating LREE/HREE
- Loss of Cs, Rb
- HFSE content varies with Ti oxides (Anatase)
- No Eu anomaly inherited
- Kaolinite displays no major enrichment/depletion

Altered prism

<u>Mineralogy</u>

- Texture preserved, pervasive fluids
- Kaolinite (± alunite), smectite, residual plagioclase
 Geochemistry
- Close to protolith values
- Kaolinite is fractionating MREE/HREE
- Loss of Cs, Rb
- HFSE are immobile
- Anomaly + in Eu, inherited from protolith

— CAL01 — CAL02 — CAL03 — CAL07 — CAL08 — CAL09 — CAL10

Silica + Alunite

Alunite + Kaolinite

— SCA01A — SCA01B — SCA01C — SCA01D — SCA01E

<u>Comparison with other Italian hydrothermal systems</u> Global vs local

<u>Conclusions</u>

Smectite+residual

Smectite

- Alteration indices and elements ratios distinguish protolith from alterites and some major alteration trends⁴.
- ➢ Protolith heritage in altered samples→ ongoing process of exchange of chemical elements & replacement of primary rock.
 Alteration products retain Nb and Ta calco-alkaline or alkaline heritage.
- Alkali elements loss during hydrothermal alteration.
- Alunite is fractionating LREE/HREE. Kaolinite plays various roles in the

REE fractionation.

- Acid fluids significantly mobilize REE during the primary rock dissolution. REE concentration is governed by the protolith initial composition.
- The fractionation between LREE, MREE and HREE is induced by mineralogy, alteration intensity, pH, lonic strength and possibly crystallinity of alteration minerals.

References

- 1. Tassi, F., Capaccioni, B., Caramanna, G., Cinti, D., Montegrossi, G., Pizzino, L., Quattrocchi, F., Vaselli, O., 2009. Low-pH waters discharging from submarine vents at Panarea Island (Aeolian Islands, southern Italy) after the 2002 gas blast: Origin of hydrothermal fluids and implications for volcanic surveillance. Applied Geochemistry 24, 246-254. https://doi.org/10.1016/j.apgeochem.2008.11.015
- 2. Capaccioni, B., Tassi, F., Vaselli, O., Tedesco, D., Poreda, R., 2007. Submarine gas burst at Panarea Island (southern Italy) on 3 November 2002: A magmatic versus hydrothermal episode. J Geophys Res Solid Earth 112, B05201. <u>https://doi.org/10.1029/2006JB004359</u>
- 3. Italiano, F., Nuccio, P.M.M., 1991. Geochemical investigations of submarine volcanic exhalations to the east of Panarea, Aeolian Islands, Italy. Journal of Volcanology and Geothermal Research 46, 125-141. https://doi.org/10.1016/0377-0273(91)90079-F
- 4. Pandarinath, K., 2022. Application potential of chemical weathering indices in the identification of hydrothermal fields. Geosciences Journal 26, 415-442. https://doi.org/10.1007/s12303-021-0042-2