8 research outputs found

    Upconversion properties of the Er-doped Y2o3, Bi2o3 and Sb2o3 nanoparticles fabricated by pulsed laser ablation in liquid media

    Get PDF
    Er-doped Y2O3, Bi2O3 and Sb2O3 nanoparticles are synthesized using pulsed laser ablation in a liquid. Ceramic targets of Y2O3:Er3+, Bi2O3:Er3+ and Sb2O3:Er3+ for ablation process are prepared by standard solid-state reaction technique and ablation is carried out in 5-ml distilled water using nanosecond Q-switched Nd:YAG laser. The morphology and size of the fabricated nanoparticles are evaluated by transmission electron microscopy and the luminescence emission properties of the prepared samples are investigated under different excitation wavelengths

    Structural, optical, and physical properties of GeOշ-PbO-BiշO³ glass

    Get PDF
    The lead bismuth germanate glasses are of growing interest, due to their low cut-off optical phonon energy, high linear and nonlinear refractive index and excellent infrared transmission. Fabrication of metallic nanostructures embedded in glass matrix also attracts many researchers because of their enhancement ability of photoluminescence and optical nonlinearity. However, fabrication of metallic nanostructure other than sphere in glass matrix still is a challenge where met with a very limited success. To achieve the research objectives, the undoped and Er3+/Yb3+ doped germanate based glasses samples were prepared. This thesis reports the preparation of GeO2-PbO-Bi2O3 ternary glass system with and without Er3+/Yb3+ by melt cast-quenching method. All samples are studied by a wide range of characterization techniques which includes their structure, elastic and optical properties. An attempt has been made to add silver nanostructures into the germanate based glasses by thermal reduction of melt-quenched glass in order to study the formation of nanostructures in the vitreous network. In the germanate based glasses system the bismuth atom will be substituted by the lead atom to achieve almost mass independent properties due to their closeness of atomic masses. Structure and physical properties were studied by X-ray diffraction,Fourier transform infra-red (FTIR), density, ultrasonic velocities, UV-Visible absorption, photoluminescence and transmission electron microscopy (TEM). All of the samples were fully amorphous and their density, ultrasonic velocities and elastic moduli are relatively low for high lead content samples. FTIR peaks related to PbO covalent bond and bending Bi-O bond of BiO6 group which are formed when both Pb and Bi act the role of former in glass network, were observed in high lead content samples in contrast with low lead samples. The FTIR data also showed that germanium participated in glass structure with both of four-fold and six-fold coordination in all of samples. The UV-visible absorption of the glasses studied showed highest energy of band-gap for Pb-rich samples and also showed characteristic peaks of Er3+/Yb3+ ions. The photoluminescence spectrum obtained by excitation at wavelengths of highest absorption peaks, showed highest intensities for samples with highest lead content which related to lowest non-radiative relaxation in Pb-rich samples. The GeO2-PbO glass dopped with Er2O3, Yb2O3 and AgNO3 were also prepared by melt quenching method. Annealing of the glass were utilized for thermally reducing of Ag+ ions to metallic silver. The TEM results showed that the annealing process at 450˚C caused the formation of silver nanoparticles of about 3 nm mean diameter size. The samples which were annealed at 400˚C temperature showed the formation of silver nanoplates with mean length size of 60 nm embedded in glass matrix. The UV-Visible absorption also confirmed the existence of metallic silver nanostructure. The FTIR shows peaks at 470 cm-1 for 450˚C annealed samples, in contrast with 400˚C annealed samples, which suggest the existence of Pb-O chains in the germanate glass network. This is the main source of difference in formation of various nano structures due to different stabilizing medium and better physical isolation of glass matrix in 450˚C annealed samples

    Ultrasonic and optical properties and emission of Er3+/Yb3+ doped lead bismuth-germanate glass affected by Bi+/Bi2+ ions

    Get PDF
    Rare earth doped heavy metal oxide glasses instead of silicates are interesting research area, especially, for their potential application in optoelectronics. In addition, contribution of different bismuth ionization states in photoluminescence spectra is still an open question. In this research work, [GeO2](60)-[PbO](40-x)-[1/2Bi(2)O(3)](x), glass hosts where x=0, 10, 20, 30, and 40 mol% and 0.5 wt% of Er2O3 and 1.5 wt% of Yb2O3 as doping agents were studied. The activated heavy metal oxide glass samples were synthesized by conventional melt quenching method. The optical properties were studied by refractive index, UV-visible absorption and photoluminescence (PL) measurements, and explained in terms of the Judd-Ofelt theory. The glass was also studied by ultrasonic measurements and showed that the velocity of sound is lower in Pb-rich samples. Our results also, showed that emission intensities are higher in host glasses with lower sound velocities, which is attributed mainly to multiphonon relaxation. In addition, variation of PL intensities with increase of bismuth composition was related not only to the variation of Debye temperature and refractive index; but also, to the increase of Omega(6) in Pb-rich samples due to the ligand field and existence of Bi2+/Bi+ ions in Bi-rich glasses. (C) 2013 Elsevier B.V. All rights reserved

    Enhancement of 1536 nm emission of Er doped ZnO nanopowder by Ag doping

    No full text
    Er, Er-Ag and Er-Mg co-doped ZnO nanopowders were prepared by wet chemical precipitation method. The structure and morphology of the prepared samples were studied by XRD and SEM, respectively. The effect of Ag and Mg on visible and IR emission properties of Er doped ZnO nanopowders have been systematically investigated. We found that Mg did not change the visible and IR emission properties of Er doped ZnO nanopowders. But, addition of Ag drastically decreases the visible emission and enhances the IR emission at 1536 nm. (C) 2014 Elsevier B.V. All rights reserved

    Upconversion Properties of the Er-Doped Y2O3, Bi2O3 and Sb2O3 Nanoparticles Fabricated by Pulsed Laser Ablation in Liquid Media

    No full text
    Er-doped Y2O3, Bi2O3 and Sb2O3 nanoparticles are synthesized using pulsed laser ablation in a liquid. Ceramic targets of Y2O3:Er3+, Bi2O3:Er3+ and Sb2O3:Er3+ for ablation process are prepared by standard solid-state reaction technique and ablation is carried out in 5-ml distilled water using nanosecond Q-switched Nd:YAG laser. The morphology and size of the fabricated nanoparticles are evaluated by transmission electron microscopy and the luminescence emission properties of the prepared samples are investigated under different excitation wavelengths

    Infrared study of Er3+/Yb3+ co-doped GeO2-PbO-Bi2O3 glass

    No full text
    Heavy metal oxide glasses, containing bismuth and/or lead in their glass structure are new alternatives for rare eart (RE) doped hosts. Hence, the study of the structure of these vitreous systems is of great interest for science and technology. In this research work, GeO2-PbO-Bi2O3 glass host doped with Er3+/Yb3+ ions was synthesized by a conventional melt quenching method. The Fourier transform infrared (FTIR) results showed that PbO and Bi2O3 participate with PbO4 tetragonal pyramids and strongly distort BiO6 octahedral units in the glass network, which subsequently act as modifiers in glass structure. These results also confirmed the existence of both four and six coordination of germanium oxide in glass matrix

    Quantum cutting effect and photoluminescence emission at about 1,000 nm from Er-Yb co-doped ZnO nanoplates prepared by wet chemical precipitation method

    No full text
    ZnO nanoplates with Er-doping concentrations varying in the range from 3 to 7 wt% and co-doped with (Er-Yb) (7 x 7 wt%) were successfully prepared by wet chemical precipitation method. The effects of doping on the structural and optical properties of ZnO nanostructures have been systematically investigated. The structural morphology of the prepared nanostructures was found to change with increasing Er-doping concentrations. The visible photoluminescence and infrared photoluminescence of the prepared nanostructures were measured at room temperature. The intensity of visible emission spectra was found to increase with increasing Er-doping concentrations and was further enhanced for (Er-Yb) co-doped ZnO nanoplate samples. Additionally, Er-doped (7 wt%) and Yb-doped (7 wt%) ZnO nanoplates showed an enhanced emission peak at 950 nm, whereas two enhanced emission peaks at 950 and 980 nm have been found for (Er-Yb)-co-doped (7 x 7 wt%) ZnO nanoplates samples when excited at 310, 365 and 371 nm excitation wavelengths
    corecore