3 research outputs found

    Pomegranate (Punicagranatum) juice decreases lipid peroxidation, but has no effect on plasma advanced glycated end-products in adults with type 2 diabetes: a randomized double-blind clinical trial

    No full text
    Introduction: Diabetes mellitus characterized by hyperglycemia could increase oxidative stress and formation of advanced glycated end-products (AGEs), which contribute to diabetic complications. The purpose of this study was to assess the effect of pomegranate juice (PJ) containing natural antioxidant on lipid peroxidation and plasma AGEs in patients with type 2 diabetes (T2D). Materials and methods: In a randomized, double-blind, placebo-controlled trial, 44 patients (age range 56±6.8 years), T2D were randomly assigned to one of two groups: group A (PJ, n=22) and group B (Placebo, n=22). At the baseline and the end of 12-week intervention, biochemical markers including fasting plasma glucose, insulin, oxidative stress, and AGE markers including carboxy methyl lysine (CML) and pentosidine were assayed. Results: At baseline, there were no significant differences in plasma total antioxidant capacity (TAC) levels between the two groups, but malondialdehyde (MDA) decreased levels were significantly different (P<0.001). After 12 weeks of intervention, TAC increased (P<0.05) and MDA decreased (P<0.01) in the PJ group when compared with the placebo group. However, no significant differences were observed in plasma concentration of CML and pentosidine between the two groups. Conclusions: The study showed that PJ decreases lipid peroxidation. Therefore, PJ consumption may delay onset of T2D complications related to oxidative stress

    Are non-high–density lipoprotein fractions associated with pediatric metabolic syndrome? The CASPIAN-V study

    No full text
    Abstract Background Non-high-density lipoprotein cholesterol (non-HDL-C) is considered as a valuable predictor for dyslipidemia and subclinical atherosclerosis which can be an appropriate index for identifying individuals with metabolic syndrome (MetS). Objective To evaluate the association between non-HDL-C MetS and determine the optimal cut-points of non-HDL-C fractions for identifying MetS in Iranian children and adolescents. Methods This nationwide study was conducted in the framework of the fifth survey of a national school-based surveillance program on children and adolescents aged 7–18 years. MetS was defined by the Adult Treatment Panel III (ATP III) criteria modified for the pediatric age group. The analysis of receiver operating characteristic (ROC) curve was applied to determine the optimal cut-points of non-HDL-C, difference between non-HDL-C and LDL-C (Diff-C) and triglycerides (TG) to HDL-C ratio (TG/HDL-C) for the prediction of MetS. Results Overall, the study participants consisted of 3843 students (52.3% boys) with mean (±SD) age of 12.28 (3.1) years. The odds of high LDL-C, low HDL-C and MetS were increased in subjects with higher non-HDL-C, Diff-C and TG/HDL-C (P < 0.05). Non-HDL-C, Diff-C and TG/HDL-C cut-off points for predicting MetS were 120.5 mg/dl (sensitivity: 44%, specificity: 73%), 19.9 mg/dl (sensitivity: 85%, specificity: 75%) and 2.53 (sensitivity: 82%, specificity: 79%), respectively. Conclusions This study revealed a strong association between surrogates for serum lipid profile including non-HDL-C, TG/HDL-C and Diff-C and pediatric MetS. Our findings suggest that age- and gender-specific reference values of these markers were appropriate for both risk classification and long-term control of cardiovascular events in clinical assessments
    corecore