98 research outputs found

    Circulating miR-15b and miR-130b in serum as potential markers for detecting hepatocellular carcinoma: a retrospective cohort study

    Get PDF
    Objective: Serum α-fetoprotein (AFP) is the most commonly used biomarker for screening hepatocellular carcinoma (HCC) but fails to detect about half of the patients. Thus, we investigated if circulating microRNAs (miRNAs) could outperform AFP for HCC detection. Design: A retrospective cohort study. Setting: Two clinical centres in China. Participants: The exploration phase included 96 patients with HCC who received primary curative hepatectomy, and the validation phase included 29 hepatitis B carriers, 57 patients with HCC and 30 healthy controls. Main outcome measures: Expression of miRNAs was measured by real-time quantitative reverse transcription-PCR. Areas under receiver operating characteristic curves were used to determine the feasibility of using serum miRNA concentration as a diagnostic marker for defining HCC. A multivariate logistic regression analysis was used to evaluate performances of combined serum miRNAs. Results: In the exploration phase, miRNA profiling on resected tumour/adjacent non-tumour tissues identified miR-15b, miR-21, miR-130b and miR-183 highly expressed in tumours. These miRNAs were also detectable in culture supernatants of HCC cell lines and in serum samples of patients. Remarkably, these serum miRNAs were markedly reduced after surgery, indicating the tumour-derived source of these circulating miRNAs. In a cross-centre validation study, combined miR-15b and miR-130b demonstrated as a classifier for HCC detection, yielding a receiver operating characteristic curve area of 0.98 (98.2% sensitivity and 91.5% specificity). The detection sensitivity of the classifier in a subgroup of HCCs with low AFP (<20 ng/ml) was 96.7%. The classifier also identified early-stage HCC cases that could not be detected by AFP. Conclusion: The combined miR-15b and miR-130b classifier is a serum biomarker with clinical value for HCC screening.published_or_final_versio

    Survival Analysis of Re-resection Versus Radiofrequency Ablation for Intrahepatic Recurrence After Hepatectomy for Hepatocellular Carcinoma

    Get PDF
    Ó The Author(s) 2011. This article is published with open access at Springerlink.com Background Tumor recurrence after resection of hepatocellular carcinoma is a common phenomenon. Re-resection and radiofrequency ablation (RFA) are good options for treating recurrent HCC. This study compared the efficacy of these two modalities in the treatment of intrahepatic HCC recurrence after hepatectomy. Methods From January 2001 to December 2008, a total of 179 patients developed intrahepatic HCC recurrence after hepatectomy. To treat the recurrence, 29 patients underwent re-resection and 45 patients had RFA. Patient characteristics, clinicopathologic data, and survival outcomes were reviewed. Results Child-Pugh status, time to develop first recurrence (12.2 vs. 8.7 months), and recurrent tumor size (2.1 vs. 2.1 cm) were comparable for the two groups. Time to develop a second intrahepatic recurrence after re-resection and RFA was 5.9 and 4.0 months respectively. The 1-, 3-, and 5-year disease-free survival rates were 41.4%, 24.2%, and 24.2 % after re-resection and 32.2%, 12.4%, and 9.3% after RFA (p = 0.14). The 1-, 3-, and 5-year overall survival rates were 89.7%, 56.5%, and 35.2 % after re-resection and 83.7%, 43.1%, and 29.1 % after RFA (p = 0.48). For the second recurrence, 33.3 % of patients underwent a second round of RFA and 10.0 % underwent a third resection

    The Role of Proline Rich Tyrosine Kinase 2 (Pyk2) on Cisplatin Resistance in Hepatocellular Carcinoma

    Get PDF
    Aims: We previously demonstrated Proline rich tyrosine kinase 2 (Pyk2) plays important roles in regulating tumor progression, migration and invasion in hepatocellular carcinoma (HCC). In this study, we aimed to examine the role of proline rich tyrosine kinase 2 (Pyk2) on cisplatin resistance in HCC and to explore its underlying molecular mechanism. Methodology/Principal Findings: Stable transfectants either overexpressing or suppressing Pyk2 were established in different HCC cell lines. MTT, colony formation and Annexin-V assays were employed to examine their in vitro responses to cisplatin. Xenograft ectopic and orthotopic nude mice models were generated to investigate the in vivo responses of them to cisplatin treatment. cDNA microarray was performed to identify Pyk2-induced genes which were further validated by quantitative real-time RT-PCR using clinical HCC samples. In vitro functional study demonstrated that Pyk2-overexpressing HCC transfectants exhibited relatively lower cytotoxicity, higher colony-forming ability and lower apoptosis to cisplatin compared with the control transfectants. Moreover, Pyk2 overexpressing HCC transfectants had a higher survival rate under cisplatin treatment by up-regulation of AKT phosphorylation. In vivo xenograft nude mice model demonstrated that Pyk2-overexpressing transfectants developed higher tolerance to cisplatin treatment together with less tumor necrosis and apoptosis. cDNA microarray analysis revealed that there were more than 4,000 genes differentially expressed upon overexpression of Pyk2. Several upregulated genes were found to be involved in drug resistance and invasion in cancers. Among them, the expression profiles of MDR1, GAGE1, STAT1 and MAP7 were significantly associated with the expression of Pyk2 in clinical HCC samples. Conclusions: Our results may suggest a new evidence of Pyk2 on promoting cisplatin resistance of HCC cells through preventing cell apoptosis, activation of AKT pathway and upregulation of drug resistant genes. © 2011 Geng et al.published_or_final_versio

    Liver Transplantation for Hepatocellular Carcinoma

    Get PDF
    Background: Orthotopic liver transplantation (OLT) is the best available option for early hepatocellular carcinoma (HCC), although its application is limited by stringent selection criteria, costs, and deceased donor graft shortage, particularly in Asia, where living donor liver transplant (LDLT) has been developed. Methods: This article reviews the present standards for patient selection represented by size-and-number criteria with particular references to Milan Criteria and novel prediction models based on results achieved in patients exceeding those limits, with consideration of the expanded indication represented by the UCSF Criteria. Results: The expected outcomes after deceased donor liver transplant (DDLT) or LDLT are favorable if predetermined selection criteria are applied. However, selection bias, difference in waiting time, and ischemia-regeneration injuries of the graft among DDLT vs LDLT may influence long-term results. In the article, the differences between East and West in first-line treatments for HCC (resection vs transplantation), indications, and ethics for the donor, are summarized as well as possible novel predictors of tumor biology (especially DNA mutation and fractional allelic loss, FAI) to be considered for better outcome prediction. Conclusions: Liver transplantation remains the most promising product of modern surgery and represents a cornerstone in the management of patients with HCC. © 2007 The Author(s)

    Gene Signatures Derived from a c-MET-Driven Liver Cancer Mouse Model Predict Survival of Patients with Hepatocellular Carcinoma

    Get PDF
    Biomarkers derived from gene expression profiling data may have a high false-positive rate and must be rigorously validated using independent clinical data sets, which are not always available. Although animal model systems could provide alternative data sets to formulate hypotheses and limit the number of signatures to be tested in clinical samples, the predictive power of such an approach is not yet proven. The present study aims to analyze the molecular signatures of liver cancer in a c-MET-transgenic mouse model and investigate its prognostic relevance to human hepatocellular carcinoma (HCC). Tissue samples were obtained from tumor (TU), adjacent non-tumor (AN) and distant normal (DN) liver in Tet-operator regulated (TRE) human c-MET transgenic mice (n = 21) as well as from a Chinese cohort of 272 HBV- and 9 HCV-associated HCC patients. Whole genome microarray expression profiling was conducted in Affymetrix gene expression chips, and prognostic significances of gene expression signatures were evaluated across the two species. Our data revealed parallels between mouse and human liver tumors, including down-regulation of metabolic pathways and up-regulation of cell cycle processes. The mouse tumors were most similar to a subset of patient samples characterized by activation of the Wnt pathway, but distinctive in the p53 pathway signals. Of potential clinical utility, we identified a set of genes that were down regulated in both mouse tumors and human HCC having significant predictive power on overall and disease-free survival, which were highly enriched for metabolic functions. In conclusions, this study provides evidence that a disease model can serve as a possible platform for generating hypotheses to be tested in human tissues and highlights an efficient method for generating biomarker signatures before extensive clinical trials have been initiated

    Chemokine-driven lymphocyte infiltration: an early intratumoural event determining long-term survival in resectable hepatocellular carcinoma

    Get PDF
    Objective Hepatocellular carcinoma (HCC) is a heterogeneous disease with poor prognosis and limited methods for predicting patient survival. The nature of the immune cells that infiltrate tumours is known to impact clinical outcome. However, the molecular events that regulate this infiltration require further understanding. Here the ability of immune genes expressed in the tumour microenvironment to predict disease progression was investigated.MethodsUsing quantitative PCR, the expression of 14 immune genes in resected tumour tissues from 57 Singaporean patients was analysed. The nearest-template prediction method was used to derive and test a prognostic signature from this training cohort. The signature was then validated in an independent cohort of 98 patients from Hong Kong and Zurich. Intratumoural components expressing these critical immune genes were identified by in situ labelling. Regulation of these genes was analysed in vitro using the HCC cell line SNU-182.ResultsThe identified 14 immune-gene signature predicts patient survival in both the training cohort (p=0.0004 and HR=5.2) and the validation cohort (p=0.0051 and HR=2.5) irrespective of patient ethnicity and disease aetiology. Importantly, it predicts the survival of patients with early disease (stages I and II), for whom classical clinical parameters provide limited information. The lack of predictive power in late disease stages III and IV emphasises that a protective immune microenvironment has to be established early in order to impact disease progression significantly. This signature includes the chemokine genes CXCL10, CCL5 and CCL2, whose expression correlates with markers of T helper 1 (Th1), CD8(+) T and natural killer (NK) cells. Inflammatory cytokines (tumour necrosis factor α, interferon γ) and Toll-like receptor 3 ligands stimulate intratumoural production of these chemokines which drive tumour infiltration by T and NK cells, leading to enhanced cancer cell death.ConclusionA 14 immune-gene signature, which identifies molecular cues driving tumour infiltration by lymphocytes, accurately predicts survival of patients with HCC especially in early disease

    Radio Astronomy

    Get PDF
    Contains reports on four research projects.Joint Services Electronics Program (Contract DAAB07-71-C-0300)California Institute of Technology (Contract 952568)National Aeronautics and Space Administration (Contract NAS1-10693)National Science Foundation (Grant GP-21348A#2
    corecore