7,230 research outputs found
Panel discussion
"The Importance of Being Predictable" by John B. Taylor -- "Monetary Policy Under Uncertainty" by Ben S. Bernanke -- "The Importance of Being Predictable" by William PooleMonetary policy
Panel discussion monetary policy modeling: where are we and where should we be going?
Monetary policy ; Inflation (Finance) ; Econometric models
The 16-day variation in tidal amplitudes at Grahamstown (33.3° S, 26.5° E)
International audienceMeteor wind data at Grahamstown (33.3° S, 26.5° E) have been used to study the short-term (planetary scale) variations of the diurnal and semidiurnal tidal amplitudes at ~ 90 km altitude. Wavelet multi-resolution and spectral techniques reveal that planetary periodicities of ~ 10 and ~ 16 days dominate the wave spectrum in the ~ 2?20-day period range. The quasi-16-day oscillation is thought to be related to similar oscillations in the lower atmosphere. Also, there seems to be a link between the winter/equinox 16-day oscillation in the mean flow and that in the semidiurnal tidal amplitudes. It is thought that this is probably due to either the coupling between the normal mode-mean flow interactions and the gravity wave-tidal interactions, or to direct nonlinear interactions between planetary waves and the tide. On the other hand, a comparison of the mean flow and the diurnal tide does not show evidence of correlation. Possible reasons for this disparity are discussed briefly
The 16-day variation in the mean flow at Grahamstown (33.3° S, 26.5° E)
International audienceData from the Grahamstown (33.3° S, 26.5° E) meteor radar have been used to study the short-term variations of the mean flow at ~ 90 km altitude. The results show considerable variation characterised by a superposition of fluctuations on different planetary time scales. Wavelet multi-resolution and spectral techniques reveal that the quasi-16-day oscillation dominates the wave spectrum in the ~ 2?20-day period range. This quasi-16-day oscillation, which is thought to be related to a similar oscillation in the lower atmosphere, is found to be dominant in winter and the equinoxes. However, it is sometimes significant in summer, which could be due to cross-equatorial ducting and the selective transmissivity of gravity waves
Enhanced thermal stability and spin-lattice relaxation rate of N@C60 inside carbon nanotubes
We studied the temperature stability of the endohedral fullerene molecule,
N@C60, inside single-wall carbon nanotubes using electron spin resonance
spectroscopy. We found that the nitrogen escapes at higher temperatures in the
encapsulated material as compared to its pristine, crystalline form. The
temperature dependent spin-lattice relaxation time, T_1, of the encapsulated
molecule is significantly shorter than that of the crystalline material, which
is explained by the interaction of the nitrogen spin with the conduction
electrons of the nanotubes.Comment: 5 pages, 4 figures, 1 tabl
A target repurposing approach identifies N-myristoyltransferase as a new candidate drug target in filarial nematodes
Myristoylation is a lipid modification involving the addition of a 14-carbon unsaturated fatty acid, myristic acid, to the N-terminal glycine of a subset of proteins, a modification that promotes their binding to cell membranes for varied biological functions. The process is catalyzed by myristoyl-CoA:protein N-myristoyltransferase (NMT), an enzyme which has been validated as a drug target in human cancers, and for infectious diseases caused by fungi, viruses and protozoan parasites. We purified Caenorhabditis elegans and Brugia malayi NMTs as active recombinant proteins and carried out kinetic analyses with their essential fatty acid donor, myristoyl-CoA and peptide substrates. Biochemical and structural analyses both revealed that the nematode enzymes are canonical NMTs, sharing a high degree of conservation with protozoan NMT enzymes. Inhibitory compounds that target NMT in protozoan species inhibited the nematode NMTs with IC50 values of 2.5-10 nM, and were active against B. malayi microfilariae and adult worms at 12.5 µM and 50 µM respectively, and C. elegans (25 µM) in culture. RNA interference and gene deletion in C. elegans further showed that NMT is essential for nematode viability. The effects observed are likely due to disruption of the function of several downstream target proteins. Potential substrates of NMT in B. malayi are predicted using bioinformatic analysis. Our genetic and chemical studies highlight the importance of myristoylation in the synthesis of functional proteins in nematodes and have shown for the first time that NMT is required for viability in parasitic nematodes. These results suggest that targeting NMT could be a valid approach for the development of chemotherapeutic agents against nematode diseases including filariasis
Inelastic neutron scattering studies of the quantum frustrated magnet clinoatacamite, -Cu2(OD)3Cl, a proposed valence bond solid (VBS)
The frustrated magnet clinoatacamite, -Cu(OH)Cl, is
attracting a lot of interest after suggestions that at low temperature it forms
an exotic quantum state termed a Valence Bond Solid (VBS) made from dimerised
Cu () spins.\cite{Lee_clinoatacamite} Key to the arguments
surrounding this proposal were suggestions that the kagom\'e planes in the
magnetic pyrochlore lattice of clinoatacamite are only weakly coupled, causing
the system to behave as a quasi-2-dimensional magnet. This was reasoned from
the near 95 angles made at the bridging oxygens that mediate exchange
between the Cu ions that link the kagom\'e planes.
Recent work pointed out that this exchange model is inappropriate for
-Cu(OH)Cl, where the oxygen is present as a
-OH.\cite{Wills_JPC} Further, it used symmetry calculations and neutron
powder diffraction to show that the low temperature magnetic structure (
K) was canted and involved significant spin ordering on all the Cu
spins, which is incompatible with the interpretation of simultaneous VBS and
N\'eel ordering. Correspondingly, clinoatacamite is best considered a distorted
pyrochlore magnet. In this report we show detailed inelastic neutron scattering
spectra and revisit the responses of this frustrated quantum magnet.Comment: Proceedings of The International Conference on Highly Frustrated
Magnetism 2008 (HFM2008
Interpretation of Nuclear Quadrupole Resonance Spectra in Doped LaCuO
The nuclear quadrupole resonance (NQR) spectrum of strontium doped
LaCuO surprisingly resembles the NQR spectrum of LaCuO doped
with excess oxygen, both spectra being dominated by a main peak and one
principal satellite peak at similar frequencies. Using first-principles cluster
calculations this is investigated here by calculating the electric field
gradient (EFG) at the central copper site of the cluster after replacing a
lanthanum atom in the cluster with a strontium atom or adding an interstitial
oxygen to the cluster. In each case the EFG was increased by approximately 10 %
leading unexpectedly to the explanation that the NQR spectra are only
accidentally similar and the origins are quite different. Additionally the
widths of the peaks in the NQR spectra are explained by the different EFG of
copper centres remote from the impurity. A model, based on holes moving rapidly
across the planar oxygen atoms, is proposed to explain the observed increase in
frequency of both the main and satellite peaks in the NQR spectrum as the
doping concentration is increased
- …