142 research outputs found

    Absence of spin superradiance in resonatorless magnets

    Full text link
    A spin system is considered with a Hamiltonian typical of molecular magnets, having dipole-dipole interactions and a single-site magnetic anisotropy. In addition, spin interactions through the common radiation field are included. A fully quantum-mechanical derivation of the collective radiation rate is presented. An effective narrowing of the dipole-dipole attenuation, due to high spin polarization is taken into account. The influence of the radiation rate on spin dynamics is carefully analysed. It is shown that this influence is completely negligible. No noticeable collective effects, such as superradiance, can appear in molecular magnets, being caused by electromagnetic spin radiation. Spin superradiance can arise in molecular magnets only when these are coupled to a resonant electric circuit, as has been suggested earlier by one of the authors in Laser Phys. {\bf 12}, 1089 (2002).Comment: Latex file, 14 pages, 5 figure

    Thermal compression of atomic hydrogen on helium surface

    Full text link
    We describe experiments with spin-polarized atomic hydrogen gas adsorbed on liquid 4^{4}He surface. The surface gas density is increased locally by thermal compression up to 5.5×10125.5\times10^{12} cm−2^{-2} at 110 mK. This corresponds to the onset of quantum degeneracy with the thermal de-Broglie wavelength being 1.5 times larger than the mean interatomic spacing. The atoms were detected directly with a 129 GHz electron-spin resonance spectrometer probing both the surface and the bulk gas. This, and the simultaneous measurement of the recombination power, allowed us to make accurate studies of the adsorption isotherm and the heat removal from the adsorbed hydrogen gas. From the data, we estimate the thermal contact between 2D hydrogen gas and phonons of the helium film. We analyze the limitations of the thermal compression method and the possibility to reach the superfluid transition in 2D hydrogen gas.Comment: 20 pages, 11 figure

    Vortex dynamics and upper critical fields in ultrathin Bi films

    Full text link
    Current-voltage (I-V) characteristics of quench condensed, superconducting, ultrathin BiBi films in a magnetic field are reported. These I-V's show hysteresis for all films, grown both with and without thin GeGe underlayers. Films on Ge underlayers, close to superconductor-insulator transition (SIT), show a peak in the critical current, indicating a structural transformation of the vortex solid (VS). These underlayers, used to make the films more homogeneous, are found to be more effective in pinning the vortices. The upper critical fields (Bc2_{c2}) of these films are determined from the resistive transitions in perpendicular magnetic field. The temperature dependence of the upper critical field is found to differ significantly from Ginzburg-Landau theory, after modifications for disorder.Comment: Phys Rev B, to be published Figure 6 replaced with correct figur

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Comparison of optical appearance and infrared emission of some high latitude extended dust clouds

    No full text
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe
    • …
    corecore