26 research outputs found

    Chemical weed control in sweet potatoes

    Get PDF

    Visualizing sound emission of elephant vocalizations: evidence for two rumble production types

    Get PDF
    Recent comparative data reveal that formant frequencies are cues to body size in animals, due to a close relationship between formant frequency spacing, vocal tract length and overall body size. Accordingly, intriguing morphological adaptations to elongate the vocal tract in order to lower formants occur in several species, with the size exaggeration hypothesis being proposed to justify most of these observations. While the elephant trunk is strongly implicated to account for the low formants of elephant rumbles, it is unknown whether elephants emit these vocalizations exclusively through the trunk, or whether the mouth is also involved in rumble production. In this study we used a sound visualization method (an acoustic camera) to record rumbles of five captive African elephants during spatial separation and subsequent bonding situations. Our results showed that the female elephants in our analysis produced two distinct types of rumble vocalizations based on vocal path differences: a nasally- and an orally-emitted rumble. Interestingly, nasal rumbles predominated during contact calling, whereas oral rumbles were mainly produced in bonding situations. In addition, nasal and oral rumbles varied considerably in their acoustic structure. In particular, the values of the first two formants reflected the estimated lengths of the vocal paths, corresponding to a vocal tract length of around 2 meters for nasal, and around 0.7 meters for oral rumbles. These results suggest that African elephants may be switching vocal paths to actively vary vocal tract length (with considerable variation in formants) according to context, and call for further research investigating the function of formant modulation in elephant vocalizations. Furthermore, by confirming the use of the elephant trunk in long distance rumble production, our findings provide an explanation for the extremely low formants in these calls, and may also indicate that formant lowering functions to increase call propagation distances in this species'

    A synthesis of the ecological processes influencing variation in life history and movement patterns of American eel: towards a global assessment

    Full text link

    Why Some Families of Probability Distributions Are Practically Efficient: A Symmetry-Based Explanation

    No full text
    Out of many possible families of probability distributions, some families turned out to be most efficient in practical situations. Why these particular families and not others? To explain this empirical success, we formulate the general problem of selecting a distribution with the largest possible utility under appropriate constraints. We then show that if we select the utility functional and the constraints which are invariant under natural symmetries -- shift and scaling corresponding to changing the starting point and the measuring unit for describing the corresponding quantity xx. then the resulting optimal families of probability distributions indeed include most of the empirically successful families. Thus, we get a symmetry-based explanation for their empirical success
    corecore