6,852 research outputs found

    Miniature spectrally selective dosimeter

    Get PDF
    A miniature spectrally selective dosimeter capable of measuring selected bandwidths of radiation exposure on small mobile areas is described. This is achieved by the combination of photovoltaic detectors, electrochemical integrators (E-cells) and filters in a small compact case which can be easily attached in close proximity to and substantially parallel to the surface being measured. In one embodiment two photovoltaic detectors, two E-cells, and three filters are packaged in a small case with attaching means consisting of a safety pin. In another embodiment, two detectors, one E-cell, three filters are packaged in a small case with attaching means consisting of a clip to clip over a side piece of an eye glass frame

    Inducing strong density modulation with small energy dispersion in particle beams and the harmonic amplifier free electron laser

    Get PDF
    We present a possible method of inducing a periodic density modulation in a particle beam with little increase in the energy dispersion of the particles. The flow of particles in phase space does not obey Liouville's Theorem. The method relies upon the Kuramoto-like model of collective synchronism found in free electron generators of radiation, such as Cyclotron Resonance Masers and the Free Electron Laser. For the case of an FEL interaction, electrons initially begin to bunch and emit radiation energy with a correlated energy dispersion which is periodic with the FEL ponderomotive potential. The relative phase between potential and particles is then changed by approximately 180 degrees. The particles continue to bunch, however, there is now a correlated re-absorption of energy from the field. We show that, by repeating this relative phase change many times, a significant density modulation of the particles may be achieved with only relatively small energy dispersion. A similar method of repeated relative electron/radiation phase changes is used to demonstrate supression of the fundamental growth in a high gain FEL so that the FEL lases at the harmonic only

    Poisson Solver with Floating Conductor Implementation in REMCOM XFDTD Software, Benchmark Calculation Examples

    Get PDF

    A W:B4C multilayer phase retarder for broadband polarization analysis of soft x-ray radiation \ud

    Get PDF
    A W:B4C multilayer phase retarder has been designed and characterized which shows a nearly constant phase retardance between 640 and 850 eV photon energies when operated near the Bragg condition. This freestanding transmission multilayer was used successfully to determine, for the first time, the full polarization vector at soft x-ray energies above 600 eV, which was not possible before due to the lack of suitable optical elements. Thus, quantitative polarimetry is now possible at the 2p edges of the magnetic substances Fe, Co, and Ni for the benefit of magnetic circular dichroism spectroscopy employing circularly polarized synchrotron radiatio

    Dark ages reionization & galaxy formation simulation XII: Bubbles at dawn

    Full text link
    Direct detection of regions of ionized hydrogen (HII) has been suggested as a promising probe of cosmic reionization. Observing the redshifted 21-cm signal of hydrogen from the epoch of reionization (EoR) is a key scientific driver behind new-generation, low-frequency radio interferometers. We investigate the feasibility of combining low-frequency observations with the Square Kilometre Array and near infra-red survey data of the Wide-Field Infrared Survey Telescope to detect cosmic reionization by imaging HII bubbles surrounding massive galaxies during the cosmic dawn. While individual bubbles will be too small to be detected, we find that by stacking redshifted 21-cm spectra centred on known galaxies, it will be possible to directly detect the EoR at z∼9−12z \sim 9-12, and to place qualitative constraints on the evolution of the spin temperature of the intergalactic medium (IGM) at z≥9z \geq 9. In particular, given a detection of ionized bubbles using this technique, it is possible to determine if the IGM surrounding them is typically in absorption or emission. Determining the globally-averaged neutral fraction of the IGM using this method will prove more difficult due to degeneracy with the average size of HII regions.Comment: 14 pages, 11 figures, 2 tables, published in MNRAS. Updated to match published version. Additional results and comments added from previous version. All other results and conclusions remain unchange

    Dark-ages Reionization and Galaxy Formation Simulation - XIV. Gas accretion, cooling and star formation in dwarf galaxies at high redshift

    Full text link
    We study dwarf galaxy formation at high redshift (z≥5z\ge5) using a suite of high- resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose 3 modifications to SAMs that will provide more accurate high-redshift simulations. These include 1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; 2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and 3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.Comment: 20 pages, 10 figures; Updated to match the published version. All results and conclusions remain unchange

    Dark-ages reionization and galaxy formation simulation - IX. Economics of reionizing galaxies

    Full text link
    Using a series of high-resolution hydrodynamical simulations we show that during the rapid growth of high-redshift (z > 5) galaxies, reserves of molecular gas are consumed over a time-scale of 300Myr, almost independent of feedback scheme. We find that there exists no such simple relation for the total gas fractions of these galaxies, with little correlation between gas fractions and specific star formation rates. The bottleneck or limiting factor in the growth of early galaxies is in converting infalling gas to cold star-forming gas. Thus, we find that the majority of high redshift dwarf galaxies are effectively in recession, with demand (of star formation) never rising to meet supply (of gas), irrespective of the baryonic feedback physics modelled. We conclude that the basic assumption of self-regulation in galaxies - that they can adjust total gas consumption within a Hubble time - does not apply for the dwarf galaxies thought to be responsible for providing most UV photons to reionize the high redshift Universe. We demonstrate how this rapid molecular time-scale improves agreement between semi-analytic model predictions of the early Universe and observed stellar mass functions.Comment: 17 pages, 27 figures, accepted for publication in MNRAS, minor updates to align with final published versio
    • …
    corecore