2,488 research outputs found

    Shuttle OFT medical report: Summary of medical results from STS-1, STS-2, STS-3, and STS-4

    Get PDF
    The medical operations for the orbital test flights which includes a review of the health of the crews before, during, and immediately after the four shuttle orbital flights are reported. Health evaluation, health stabilization program, medical training, medical "kit" carried in flight, tests and countermeasures for space motion sickness, cardiovascular, biochemistry and endocrinology results, hematology and immunology analyses, medical microbiology, food and nutrition, potable water, Shuttle toxicology, radiological health, and cabin acoustical noise are reviewed. Information on environmental effects of Shuttle launch and landing, medical information management, and management, planning, and implementation of the medical program are included

    Visual suppression of the vestibulo-ocular reflex during space flight

    Get PDF
    Visual suppression of the vestibulo-ocular reflex was studied in 16 subjects on 4 Space Shuttle missions. Eye movements were recorded by electro-oculography while subjects fixated a head mounted target during active sinusoidal head oscillation at 0.3 Hz. Adequacy of suppression was evaluated by the number of nystagmus beats, the mean amplitude of each beat, and the cumulative amplitude of nystagmus during two head oscillation cycles. Vestibulo-ocular reflex suppression was unaffected by space flight. Subjects with space motion sickness during flight had significantly more nystagmus beats than unaffected individuals. These susceptible subjects also tended to have more nystagmus beats before flight

    Eye and head motion during head turns in spaceflight

    Get PDF
    Eye-head motion was studied pre-, in- and postflight during single voluntary head turns. A transient increase in vestibulo-ocular reflex (VOR) gain occurred early in the flight, but later trended toward normal. This increased gain was produced by a relative increase in eye counterrotation velocity. Asymmetries in gain with right and left turns also occurred, caused by asymmetries in eye counterrotation velocities. These findings were remarkably similar to those from Soviet primate studies using gaze fixation targets, except the human study trended more rapidly toward normal. These findings differ substantially from those measuring VOR gain by head oscillation, in which no significant changes were found inflight. No visual disturbances were noted in either test condition or in normal activities. These head turn studies are the only ones to date documenting any functional change in VOR in weightlessness

    Studies of the horizontal vestibulo-ocular reflex on STS 7 and 8

    Get PDF
    Unpaced voluntary horizontal head oscillation was used to study the Vestibulo-Ocular Reflex (VOR) on Shuttle flights STS 7 and 8. Ten subjects performed head oscillations at 0.33 Hz + or - 30 deg amplitude under the followng conditions: VVOR (visual VOR), eyes open and fixed on a stationary target; VOR-EC, with eyes closed and fixed on the same target in imagination; and VOR-S (VOR suppression), with eyes open and fixed on a head-synchronized target. Effects of weightlessness, flight phase, and Space Motion Sickness (SMS) on head oscillation characteristics were examined. A significant increase in head oscillation frequency was noted inflight in subjects free from SMS. In subjects susceptible to SMS, frequency was reduced during their Symptomatic period. The data also suggest that the amplitude and peak velocity of head oscillation were reduced early inflight. No significant changes were noted in reflex gain or phase in any of the test conditions; however, there was a suggestion of an increase in VVOR and VOR-ES gain early inflight in asymptomatic subjects. A significant difference in VOR-S was found between SMS susceptible and non-susceptible subjects. There is no evidence that any changes in VOR characteristics contributed to SMS

    Saccadic eye movement during spaceflight

    Get PDF
    Saccadic eye movements were studied in six subjects during two Space Shuttle missions. Reaction time, peak velocity and accuracy of horizontal, visually-guided saccades were examined preflight, inflight and postflight. Conventional electro-oculography was used to record eye position, with the subjects responding to pseudo-randomly illuminated targets at 0 deg and + or - 10 deg and 20 deg visual angles. In all subjects, preflight measurements were within normal limits. Reaction time was significantly increased inflight, while peak velocity was significantly decreased. A tendency toward a greater proportion of hypometric saccades inflight was also noted. Possible explanations for these changes and possible correlations with space motion sickness are discussed

    Microminiaturized, biopotential conditioning system (MBCS)

    Get PDF
    Multichannel, medical monitoring system allows almost complete freedom of movement for subject during monitoring periods. System comprises monitoring unit (biobelt), transmission line, and data acquisition unit. Belt, made of polybenzimidizole fabric, is wrapped around individual's waist and held in place by overlapping sections of Velcro closure material

    VIS: the visible imager for Euclid

    Get PDF
    Euclid-VIS is a large format visible imager for the ESA Euclid space mission in their Cosmic Vision program, scheduled for launch in 2019. Together with the near infrared imaging within the NISP instrument it forms the basis of the weak lensing measurements of Euclid. VIS will image in a single r+i+z band from 550-900 nm over a field of view of ~0.5 deg2. By combining 4 exposures with a total of 2240 sec, VIS will reach to V=24.5 (10{\sigma}) for sources with extent ~0.3 arcsec. The image sampling is 0.1 arcsec. VIS will provide deep imaging with a tightly controlled and stable point spread function (PSF) over a wide survey area of 15000 deg2 to measure the cosmic shear from nearly 1.5 billion galaxies to high levels of accuracy, from which the cosmological parameters will be measured. In addition, VIS will also provide a legacy imaging dataset with an unprecedented combination of spatial resolution, depth and area covering most of the extra-Galactic sky. Here we will present the results of the study carried out by the Euclid Consortium during the Euclid Definition phase.Comment: 10 pages, 6 figure

    Growing Scale-Free Networks with Tunable Clustering

    Full text link
    We extend the standard scale-free network model to include a ``triad formation step''. We analyze the geometric properties of networks generated by this algorithm both analytically and by numerical calculations, and find that our model possesses the same characteristics as the standard scale-free networks like the power-law degree distribution and the small average geodesic length, but with the high-clustering at the same time. In our model, the clustering coefficient is also shown to be tunable simply by changing a control parameter - the average number of triad formation trials per time step.Comment: Accepted for publication in Phys. Rev.

    Biomechanical Analysis of Reducing Sacroiliac Joint Shear Load by Optimization of Pelvic Muscle and Ligament Forces

    Get PDF
    Effective stabilization of the sacroiliac joints (SIJ) is essential, since spinal loading is transferred via the SIJ to the coxal bones, and further to the legs. We performed a biomechanical analysis of SIJ stability in terms of reduced SIJ shear force in standing posture using a validated static 3-D simulation model. This model contained 100 muscle elements, 8 ligaments, and 8 joints in trunk, pelvis, and upper legs. Initially, the model was set up to minimize the maximum muscle stress. In this situation, the trunk load was mainly balanced between the coxal bones by vertical SIJ shear force. An imposed reduction of the vertical SIJ shear by 20% resulted in 70% increase of SIJ compression force due to activation of hip flexors and counteracting hip extensors. Another 20% reduction of the vertical SIJ shear force resulted in further increase of SIJ compression force by 400%, due to activation of the transversely oriented M. transversus abdominis and pelvic floor muscles. The M. transversus abdominis crosses the SIJ and clamps the sacrum between the coxal bones. Moreover, the pelvic floor muscles oppose lateral movement of the coxal bones, which stabilizes the position of the sacrum between the coxal bones (the pelvic arc). Our results suggest that training of the M. transversus abdominis and the pelvic floor muscles could help to relieve SI-joint related pelvic pain
    corecore