892 research outputs found

    Frizzled receptor 6 marks rare, highly tumourigenic stem-like cells in mouse and human neuroblastomas

    Get PDF
    Copyright Ā© 2011 Cantilena et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The article was made available through the Brunel Open Access Publishing Fund.Wnt signalling is an important component of vertebrate development, required for specification of the neural crest. Ten Wnt receptors [Frizzled receptor 1-10 (Fzd1-10)] have been identified so far, some of which are expressed in the developing nervous system and the neural crest. Here we show that expression of one such receptors, Fzd6, predicts poor survival in neuroblastoma patients and marks rare, HIF1/2 Ī±-positive cells in tumour hypoxic areas. Fzd6 positive neuroblastoma cells form neurospheres with high efficiency, are resistant to doxorubicin killing and express high levels of mesenchymal markers such as Twist1 and Notch1. Expression of Fzd6 is required for the expression of genes of the noncanonical Wnt pathway and the spheres forming activity. When transplanted into immunodeficient mice, neuroblastoma cells expressing the Fzd6 marker grow more aggressively than their Fzd6 negative counterparts. We conclude that Fzd6 is a new surface marker of aggressive neuroblastoma cells with stem cell-like features.This work was sponsored by the Wellcome Trust, the RICC cancer fund, SPARKS, the Italian Association for Cancer Research, Regione Liguria and the Italian Ministry of Health

    Protein kinase C isoenzymes in human neuroblasts involvement of PKCĪµ in cell differentiation

    Get PDF
    AbstractAlthough neuronal cells are a major target of phorbol ester action, the activity of the various protein kinase C (PKC) isoenzymes have not been studied in detail in human neuroblasts. Differentiation of the LAN-5 human neuroblastoma cell line by interferon-Ī³ (IFN-Ī³) is accompanied by a twofold increase in PKC activity. Since PKC is a multigene family, we investigated which isoforms were expressed in control and differentiated cells, and which of these isoenzymes is involved in neuronal differentiation. We found that: (1) PKC activity is higher in differentiated than in undifferentiated cells; (2) RT-PCR analysis showed the expression of mRNA for PKCĪ±, -Ī³, -Ī“ -Īµ and-Ī¶ and the absence of mRNA for Ī² in untreated LAN-5 cells; (3) Western blot evaluation with PKC isoform-specific antibodies showed the same pattern of PKC expression in non-differentiated cells; (4) Expression of PKCĪµ mRNA was significantly enhanced by IFN-Ī³-induced differentiation, while the other isoforms were not affected; (5) Differentiation of LAN-5 cells with IFN-Ī³ or retinoic acid induced overexpression of the PKCĪµ protein, while inhibition of cell proliferation by fetal calf serum starvation was without effect. These findings suggest that expression of PKCĪµ isoform is tightly coupled with neuronal differentiation and may play a role in the maintenance of the differentiated state

    Ultrafast dynamics in unaligned MWCNTs decorated with metal nanoparticles

    Get PDF
    The relaxation dynamics of unaligned multi-walled carbon nanotubes decorated with metallic nanoparticles have been studied by using transient optical measurements. The fast dynamics due to the short-lived free-charge carriers excited by the pump are not affected by the presence of nanoparticles. Conversely, a second long dynamics, absent in bare carbon nanotubes, appears only in the decorated samples. A combination of experiment and theory allows us to ascribe this long dynamics to relaxation channels involving electronic states localized at the tube-nanoparticle interface

    LRRK2 G2019S kinase activity triggers neurotoxic NSF aggregation

    Get PDF
    Parkinsonā€™s disease (PD) is characterized by the progressive degeneration of dopaminergic neurons within the substantia nigra pars compacta and the presence of protein aggregates in surviving neurons. LRRK2 G2019S mutation is one of the major determinants of familial PD cases and leads to late-onset PD with pleomorphic pathology, including alpha-synuclein accumulation and deposition of protein inclusions. We demonstrated that LRRK2 phosphorylates N-ethylmaleimide sensitive factor (NSF). We observed aggregates containing NSF in basal ganglia specimens from G2019S carrier PD patients and in cellular and animal models expressing the LRRK2 G2019S variant. We found that LRRK2 G2019S kinase activity induces the accumulation of NSF in toxic aggregates. Noteworthy, the induction of autophagy cleared NSF aggregation and rescued motor and cognitive impairment observed in aged hG2019S BAC mice. We suggest that LRRK2 G2019S pathological phosphorylation hampers substrate catabolism, thus causing the formation of cytotoxic protein inclusions
    • ā€¦
    corecore