138 research outputs found

    How isotropic is the Universe?

    Get PDF
    A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large scales. Breaking this assumption leads to a set of solutions to Einstein's field equations, known as Bianchi cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain a limit on the anisotropic expansion of (σV/H)0<4.7×10−11(\sigma_V/H)_0 < 4.7 \times 10^{-11} (95% CI), which is an order of magnitude tighter than previous Planck results that used CMB temperature only. We also place upper limits on other modes of anisotropic expansion, with the weakest limit arising from the regular tensor mode, (σT,reg/H)0<1.0×10−6(\sigma_{T,\rm reg}/H)_0<1.0 \times 10^{-6} (95% CI). Including all degrees of freedom simultaneously for the first time, anisotropic expansion of the Universe is strongly disfavoured, with odds of 121,000:1 against.Comment: 6 pages, 1 figure, v2: replaced with version accepted by PR

    Spin-SILC: CMB polarisation component separation with spin wavelets

    Get PDF
    We present Spin-SILC, a new foreground component separation method that accurately extracts the cosmic microwave background (CMB) polarisation EE and BB modes from raw multifrequency Stokes QQ and UU measurements of the microwave sky. Spin-SILC is an internal linear combination method that uses spin wavelets to analyse the spin-2 polarisation signal P=Q+iUP = Q + iU. The wavelets are additionally directional (non-axisymmetric). This allows different morphologies of signals to be separated and therefore the cleaning algorithm is localised using an additional domain of information. The advantage of spin wavelets over standard scalar wavelets is to simultaneously and self-consistently probe scales and directions in the polarisation signal P=Q+iUP = Q + iU and in the underlying EE and BB modes, therefore providing the ability to perform component separation and EE-BB decomposition concurrently for the first time. We test Spin-SILC on full-mission Planck simulations and data and show the capacity to correctly recover the underlying cosmological EE and BB modes. We also demonstrate a strong consistency of our CMB maps with those derived from existing component separation methods. Spin-SILC can be combined with the pseudo- and pure EE-BB spin wavelet estimators presented in a companion paper to reliably extract the cosmological signal in the presence of complicated sky cuts and noise. Therefore, it will provide a computationally-efficient method to accurately extract the CMB EE and BB modes for future polarisation experiments.Comment: 13 pages, 9 figures. Minor changes to match version published in MNRAS. Map products available at http://www.silc-cmb.org. Companion paper: arXiv:1605.01414 "Wavelet reconstruction of pure E and B modes for CMB polarisation and cosmic shear analyses" (B. Leistedt et al.

    SILC: a new Planck Internal Linear Combination CMB temperature map using directional wavelets

    Get PDF
    We present new clean maps of the CMB temperature anisotropies (as measured by Planck) constructed with a novel internal linear combination (ILC) algorithm using directional, scale-discretised wavelets --- Scale-discretised, directional wavelet ILC or SILC. Directional wavelets, when convolved with signals on the sphere, can separate the anisotropic filamentary structures which are characteristic of both the CMB and foregrounds. Extending previous component separation methods, which use the frequency, spatial and harmonic signatures of foregrounds to separate them from the cosmological background signal, SILC can additionally use morphological information in the foregrounds and CMB to better localise the cleaning algorithm. We test the method on Planck data and simulations, demonstrating consistency with existing component separation algorithms, and discuss how to optimise the use of morphological information by varying the number of directional wavelets as a function of spatial scale. We find that combining the use of directional and axisymmetric wavelets depending on scale could yield higher quality CMB temperature maps. Our results set the stage for the application of SILC to polarisation anisotropies through an extension to spin wavelets.Comment: 15 pages, 13 figures. Minor changes to match version published in MNRAS. Map products available at http://www.silc-cmb.or

    A framework for testing isotropy with the cosmic microwave background

    Get PDF
    We present a new framework for testing the isotropy of the Universe using cosmic microwave background data, building on the nested-sampling ANICOSMO code. Uniquely, we are able to constrain the scalar, vector and tensor degrees of freedom alike; previous studies only considered the vector mode (linked to vorticity). We employ Bianchi type VIIh_h cosmologies to model the anisotropic Universe, from which other types may be obtained by taking suitable limits. In a separate development, we improve the statistical analysis by including the effect of Bianchi power in the high-ℓ\ell, as well as the low-ℓ\ell, likelihood. To understand the effect of all these changes, we apply our new techniques to WMAP data. We find no evidence for anisotropy, constraining shear in the vector mode to (σV/H)0<1.7×10−10(\sigma_V/H)_0 < 1.7 \times 10^{-10} (95% CL). For the first time, we place limits on the tensor mode; unlike other modes, the tensor shear can grow from a near-isotropic early Universe. The limit on this type of shear is (σT,reg/H)0<2.4×10−7(\sigma_{T,\rm reg}/H)_0 < 2.4 \times 10^{-7} (95% CL).Comment: 11 pages, 6 figures, v3: minor modifications to match version accepted by MNRA

    EDGE: The origin of scatter in ultra-faint dwarf stellar masses and surface brightnesses

    Get PDF
    We demonstrate how the least luminous galaxies in the Universe, ultra-faint dwarf galaxies, are sensitive to their dynamical mass at the time of cosmic reionization. We select a low-mass (∼1.5×109 M⊙\sim \text{1.5} \times 10^{9} \, \text{M}_{\odot}) dark matter halo from a cosmological volume, and perform zoom hydrodynamical simulations with multiple alternative histories using "genetically modified" initial conditions. Earlier forming ultra-faints have higher stellar mass today, due to a longer period of star formation before their quenching by reionization. Our histories all converge to the same final dynamical mass, demonstrating the existence of extended scatter (≥\geq 1 dex) in stellar masses at fixed halo mass due to the diversity of possible histories. One of our variants builds less than 2 % of its final dynamical mass before reionization, rapidly quenching in-situ star formation. The bulk of its final stellar mass is later grown by dry mergers, depositing stars in the galaxy's outskirts and hence expanding its effective radius. This mechanism constitutes a new formation scenario for highly diffuse (r1/2∼820 pc\text{r}_{1 /2} \sim 820 \, \text{pc}, ∼32 mag arcsec2\sim 32 \, \text{mag arcsec}^2), metal-poor ([Fe /H]=−2.9\big[ \mathrm{Fe}\, / \mathrm{H} \big]= -2.9), ultra-faint (MV=−5.7\mathcal{M}_V= -5.7) dwarf galaxies within the reach of next-generation low surface brightness surveys.Comment: Minor edits to match the published ApJL version. Results unchange

    Massive neutrinos and degeneracies in Lyman-alpha forest simulations

    Get PDF
    Using a suite of hydrodynamical simulations with cold dark matter, baryons, and neutrinos, we present a detailed study of the effect of massive neutrinos on the 1-D and 3-D flux power spectra of the Lyman-α\alpha (Lyα\alpha) forest. The presence of massive neutrinos in cosmology induces a scale- and time-dependent suppression of structure formation that is strongest on small scales. Measuring this suppression is a key method for inferring neutrino masses from cosmological data, and is one of the main goals of ongoing and future surveys like eBOSS, DES, LSST, Euclid or DESI. The clustering in the Lyα\alpha forest traces the quasi-linear power at late times and on small scales. In combination with observations of the cosmic microwave background, the forest therefore provides some of the tightest constraints on the sum of the neutrino masses. However there is a well-known degeneracy between Σmν\Sigma m_{\nu} and the amplitude of perturbations in the linear matter power spectrum. We study the corresponding degeneracy in the 1-D flux power spectrum of the Lyα\alpha forest, and for the first time also study this degeneracy in the 3-D flux power spectrum. We show that the non-linear effects of massive neutrinos on the Lyα\alpha forest, beyond the effect of linear power amplitude suppression, are negligible, and this degeneracy persists in the Lyα\alpha forest observables to a high precision. We discuss the implications of this degeneracy for choosing parametrisations of the Lyα\alpha forest for cosmological analysis.Comment: 18 pages, 7 figure

    Inflationary perturbations in anisotropic backgrounds and their imprint on the CMB

    Full text link
    We extend the standard theory of cosmological perturbations to homogeneous but anisotropic universes. We present an exhaustive computation for the case of a Bianchi I model, with a residual isotropy between two spatial dimensions, which is undergoing complete isotropization at the onset of inflation; we also show how the computation can be further extended to more general backgrounds. In presence of a single inflaton field, there are three physical perturbations (precisely as in the isotropic case), which are obtained (i) by removing gauge and nondynamical degrees of freedom, and (ii) by finding the combinations of the remaining modes in terms of which the quadratic action of the perturbations is canonical. The three perturbations, which later in the isotropic regime become a scalar mode and two tensor polarizations (gravitational wave), are coupled to each other already at the linearized level during the anisotropic phase. This generates nonvanishing correlations between different modes of the CMB anisotropies, which can be particularly relevant at large scales (and, potentially, be related to the large scale anomalies in the WMAP data). As an example, we compute the spectrum of the perturbations in this Bianchi I geometry, assuming that the inflaton is in a slow roll regime also in the anisotropic phase. For this simple set-up, fixing the initial conditions for the perturbations appears more difficult than in the standard case, and additional assumptions seem to be needed to provide predictions for the CMB anisotropies.Comment: 31 pages, 3 figure

    EDGE: The shape of dark matter haloes in the faintest galaxies

    Full text link
    Collisionless Dark Matter Only (DMO) structure formation simulations predict that Dark Matter (DM) haloes are prolate in their centres and triaxial towards their outskirts. The addition of gas condensation transforms the central DM shape to be rounder and more oblate. It is not clear, however, whether such shape transformations occur in `ultra-faint' dwarfs, which have extremely low baryon fractions. We present the first study of the shape and velocity anisotropy of ultra-faint dwarf galaxies that have gas mass fractions of fgas(r<Rhalf)<0.06f_{\rm gas}(r<R_{\rm half}) < 0.06. These dwarfs are drawn from the Engineering Dwarfs at Galaxy formation's Edge (EDGE) project, using high resolution simulations that allow us to resolve DM halo shapes within the half light radius (∼100 \sim 100\,pc). We show that gas-poor ultra-faints (M200c⩽1.5×109 M_{\rm 200c} \leqslant 1.5\times10^9\,M⊙_\odot; fgas<10−5f_{\rm gas} < 10^{-5}) retain their pristine prolate DM halo shape even when gas, star formation and feedback are included. This could provide a new and robust test of DM models. By contrast, gas-rich ultra-faints (M200c>3×109 M_{\rm 200c} > 3\times10^9\,M⊙_\odot; fgas>10−4f_{\rm gas} > 10^{-4}) become rounder and more oblate within ∼10\sim 10 half light radii. Finally, we find that most of our simulated dwarfs have significant radial velocity anisotropy that rises to β~>0.5\tilde{\beta} > 0.5 at R≳3RhalfR \gtrsim 3 R_{\rm half}. The one exception is a dwarf that forms a rotating gas/stellar disc because of a planar, major merger. Such strong anisotropy should be taken into account when building mass models of gas-poor ultra-faints.Comment: 16 pages and 11 figures (excluding appendices), accepted by MNRA

    EDGE: the puzzling ellipticity of Eridanus II's star cluster and its implications for dark matter at the heart of an ultra-faint dwarf

    Full text link
    The Eridanus II (EriII) 'ultra-faint' dwarf has a large (15 pc15\,\text{pc}) and low mass (4.3×103 M⊙4.3\times10^3\,\text{M}_\odot) star cluster (SC) offset from its centre by 23±3 pc23\pm3\,\text{pc} in projection. Its size and offset are naturally explained if EriII has a central dark matter core, but such a core may be challenging to explain in a Λ\LambdaCDM cosmology. In this paper, we revisit the survival and evolution of EriII's SC, focussing for the first time on its puzzlingly large ellipticity (0.31−0.06+0.050.31^{+0.05}_{-0.06}). We perform a suite of 960 direct NN-body simulations of SCs, orbiting within a range of spherical background potentials fit to ultra-faint dwarf (UFD) galaxy simulations. We find only two scenarios that come close to explaining EriII's SC. In the first, EriII has a low density dark matter core (of size ∼70 pc\sim70\,\text{pc} and density ≲2×108 M⊙ kpc−3\lesssim2\times10^8\,\text{M}_{\odot}\,\text{kpc}^{-3}). In this model, the high ellipticity of EriII's SC is set at birth, with the lack of tidal forces in the core allowing its ellipticity to remain frozen in for long times. In the second, EriII's SC orbits in a partial core, with its high ellipticity owing to its imminent tidal destruction. However, this latter model struggles to reproduce the large size of EriII's SC, and it predicts substantial tidal tails around EriII's SC that should have already been seen in the data. This leads us to favour the cored model. We discuss potential caveats to these findings, and the implications of the cored model for galaxy formation and the nature of dark matter.Comment: 16 pages, 12 figures + appendices. Published with MNRAS. Comments welcom
    • …
    corecore