12 research outputs found

    Ferromagnetic resonance for the quantification of superparamagnetic iron oxide nanoparticles in biological materials

    Get PDF
    The aim of the present work is the presentation of a quantification methodology for the control of the amount of superparamagnetic iron oxide nanoparticles (SPIONs) administered in biological materials by means of the ferromagnetic resonance technique (FMR) applied to studies both in vivo and in vitro. The in vivo study consisted in the analysis of the elimination and biodistribution kinetics of SPIONs after intravenous administration in Wistar rats. The results were corroborated by X-ray fluorescence. For the in vitro study, a quantitative analysis of the concentration of SPIONs bound to the specific AC133 monoclonal antibodies was carried out in order to detect the expression of the antigenic epitopes (CD133) in stem cells from human umbilical cord blood. In both studies FMR has proven to be an efficient technique for the SPIONs quantification per volume unit (in vivo) or per labeled cell (in vitro)

    Properties and structural features of iron doped BABAL glasses

    No full text
    The chemical durability, density and structure of the BABAL glasses with batch compositions (100-x)(0.30BaO·0.50B2O3·0.20Al2O3)·xFe 2O3 (1 < x < 10 mol%), were investigated using Mössbauer spectroscopy, electron paramagnetic resonance (EPR), X-ray diffraction, Raman and differential thermal analysis (DTA). The chemical durability for the glass of composition 27BaO·45B2O3·18Al 2O3·10Fe2O3 (mol%) at 90 °C in distilled water was 700 times lower than that of iron phosphate glass 40Fe2O3·60P2O 5 (mol%). The Mössbauer spectra indicate the presence of iron (II) and iron (III) in tetrahedral or octahedral coordination. The results obtained from the g ef = 4.3 EPR line are typical of the occurrence of iron (III) occupying substitutional sites and the line g ef = 2.0 is related to the association of two or more Fe ions found in the interstices (or holes occupied by the glass modifier cations) of the glass network. The paths of X-ray diffraction are typical for glasses based in borate glasses. The Raman spectra showed that the boroxol ring disappears with the increase of iron content, concomitant with the appearance of BO4 and tetraborate structural units. At these conditions, an increase of dissolution rate and clustering of iron ions is observed

    EPR of gamma-induced paramagnetic centers in tellurite glasses

    No full text
    Intrinsic paramagnetic responses were observed in the 60TeO(2)-25ZnO-15Na(2)O and 85TeO(2)-15Na(2)O mol% glasses, after gamma-irradiation at room temperature: (1) a shoulder at g(1) = g(parallel to) = 2.02 +/- 0.01 and an estimated g(perpendicular to)similar to 2.0 attributed to tellurium-oxygen hole center (TeOHC); (2) a narrow resonance at g(2)= 1.9960 +/- 0.0005 related to the modifiers and (3) a resolved resonance at g(3) = 1.9700 +/- 0.0005 ascribed to a tellurium electron center (TeEC) of an electron trapped at an oxygen vacancy (V(o)(+)) in a tellurium oxide structural center. It is suggested that the creation of (NBO(-),V(o)(+)) pair follows a mechanism where the modifier oxide molecule actuates as a catalyser. An additional model for the NBO radiolysis produced by the gamma-irradiation is proposed on the basis of the evolution of the g(1), g(2) and g(3) intensities with increasing dose (kGy). Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Brazilian Agency Fundacao de Apoio Pesquisa do Estado de So Paulo (FAPESP

    Study of sodium tellurite glass using the thermally stimulated depolarization current technique (TSDC)

    No full text
    In order to have a better understanding of the role of the structure and the defects involved in the polarization processes in an 85TeO(2)-15Na(2)O mol% glass, we used the thermally stimulated depolarization currents (TSDC technique). The TSDC of the non-irradiated sample presented a strong negative peak of current at the temperature of 340 K, preceded by a relatively weak positive peak at about 300 K. after different d.c. voltages of 1200, 1500 and 2000 V were applied. No response was obtained with 1000 V. but the peak intensity increased considerably for voltages above 1200 V. After gamma-irradiation of 25 and 50 KGy doses, a depolarization of the negative peak was observed in the sample submitted to 25 KGy, whereas for the sample irradiated with 50 KGy, six TSDC peaks appeared at regular intervals of 5 KGy, in the temperature range of 100 and 300 K. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.Brazilian Agency Fundacao de Apoio a Pesquisa do Estado de Sao Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Characterization of Superparamagnetic Iron Oxide Coated with Silicone Used as Contrast Agent for Magnetic Resonance Image for the Gastrointestinal Tract

    No full text
    The present work is a report of the characterization of superparamagnetic iron oxide nanoparticles coated with silicone used as a contrast agent in magnetic resonance imaging of the gastrointestinal tract. The hydrodynamic size of the contrast agent is 281.2 rim, where it was determined by transmission electron microscopy and a Fe(3)O(4) crystalline structure was identified by X-ray diffraction, also confirmed by Mossbauer Spectroscopy. The blocking temperature of 190 K was determined from magnetic measurements based on the Zero Field Cooled and Field Cooled methods. The hysteresis loops were measured at different temperatures below and above the blocking temperature. Ferromagnetic resonance analysis indicated the superparamagnetic nature of the nanoparticles and a strong temperature dependence of the peak-to-peak linewidth Delta H(pp), giromagnetic factor g, number of spins N(S) and relaxation time T(2) were observed. This behavior can be attributed to an increase in the superexchange interaction

    Characterization of the Biocompatible Magnetic Colloid on the Basis of Fe(3)O(4) Nanoparticles Coated with Dextran, Used as Contrast Agent in Magnetic Resonance Imaging

    No full text
    The magnetic resonance imaging contrast agent, the so-called Endorem (TM) colloidal suspension on the basis of superparamagnetic iron oxide nanoparticles (mean diameter of 5.5 nm) coated with dextran, were characterized on the basis of several measurement techniques to determine the parameters of their most important physical and chemical properties. It is assumed that each nanoparticle is consisted of Fe(3)O(4) monodomain and it was observed that its oxidation to gamma-Fe(2)O(3) occurs at 253.1 degrees C. The Mossbauer spectroscopy have shown a superparamagnetic behavior of the magnetic nanoparticles. The Magnetic Resonance results show an increase of the relaxation times T(1), T(2), and T(2)* with decreasing concentration of iron oxide nanoparticles. The relaxation effects of SPIONs contrast agents are influenced by their local concentration as well as the applied field strength and the environment in which these agents interact with surrounding protons. The proton relaxation rates presented a linear behavior with concentration. The measured values of thermooptic coefficient partial derivative n/partial derivative T, thermal conductivity K, optical birefringence Delta n(0), nonlinear refractive index n(2), nonlinear absorption beta` and third-order nonlinear susceptibility vertical bar chi((3))vertical bar are also reported.Institut Israelita de Ensino e Pesquisa Albert EinsteinFAPESPCAPESCNPqInstitut do Milenio de Fluidos Complexo

    Kinetics of elimination and distribution in blood and liver of biocompatible ferrofluids based on Fe(3)O(4) nanoparticles: An EPR and XRF study

    No full text
    In this study, we evaluated the biodistribution and the elimination kinetics of a biocompatible magnetic fluid, Endorem (TM), based on dextrancoated Fe(3)O(4) nanoparticles endovenously injected into Winstar rats. The iron content in blood and liver samples was recorded using electron paramagnetic resonance (EPR) and X-ray fluorescence (XRF) techniques. The EPR line intensity at g=2.1 was found to be proportional to the concentration of magnetic nanoparticles and the best temperature for spectra acquisition was 298 K. Both EPR and XRF analysis indicated that the maximum concentration of iron in the liver occurred 95 min after the ferrofluid administration. The half-life of the magnetic nanoparticles (MNP) in the blood was (11.6 +/- 0.6) min measured by EPR and (12.6 +/- 0.6) min determined by XRF. These results indicate that both EPR and XRF are very useful and appropriate techniques for the study of kinetics of ferrofluid elimination and biodistribution after its administration into the organism. (c) 2007 Elsevier B.V. All rights reserved

    EPR, FT-IR and XRD investigation of soils from Parana, Brazil

    No full text
    Samples of Araucaria area soil from Parana state, Brazil, were separated by particle size fractionation and investigated by electron paramagnetic resonance (EPR) in X-Band of 9.5 GHz at room temperature and 77K, infra-red spectroscopy and X-ray diffractometry. The paramagnetic species in the soil samples were identified by comparison with EPR spectra of some minerals studied recently by our group, several soil types and/or soil components investigated in the literature. The value of g = 2.1 (Delta H = 85 mT) indicated the presence of ferrihydrite. Hematite was identified by g = 2.1 (Delta H = 100 mT) and g = 4.3 for Fe(3+) lines of the concentrated dominium and diluted dominium. Kaolinite was identified by IR and EPR with the resonance at g = 4.3 attributed to Fe(3+) ions in isolated sites of tetrahedral and octahedral symmetry with rhombic distortion. The resonances at g = 3.7 and g = 4.9 were attributed to Fe(3+) in more highly symmetrical environment than rhombic symmetry, but not in axial symmetry. Three signals around g = 2 were attributed to radiation defects, plus additional resonances at g = 2.8 and 9.0. Signals less intense than those at g = 2.1, 3.7, and 6.5, observed for clear grains of soil, were attributed to presence of Fe(3+) in quartz which was identified by IR and XDR. (C) 2011 Elsevier B.V. All rights reserved.Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES-Brazil)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES
    corecore