32 research outputs found

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset

    A conserved transcriptional regulator is required for RNA-directed DNA methylation and plant development

    No full text
    RNA-directed DNA methylation (RdDM) is a conserved mechanism for epigenetic silencing of transposons and other repetitive elements. We report that the rdm4 (RNA-directed DNA Methylation4) mutation not only impairs RdDM, but also causes pleiotropic developmental defects in Arabidopsis. Both RNA polymerase II (Pol II)- and Pol V-dependent transcripts are affected in the rdm4 mutant. RDM4 encodes a novel protein that is conserved from yeast to humans and interacts with Pol II and Pol V in plants. Our results suggest that RDM4 functions in epigenetic regulation and plant development by serving as a transcriptional regulator for RNA Pol V and Pol II, respectively

    NRPD4, a protein related to the RPB4 subunit of RNA polymerase II, is a component of RNA polymerases IV and V and is required for RNA-directed DNA methylation

    No full text
    RNA-directed DNA methylation (RdDM) is an RNAi-based mechanism for establishing transcriptional gene silencing in plants. The plant-specific RNA polymerases IV and V are required for the generation of 24-nucleotide (nt) siRNAs and for guiding sequence-specific DNA methylation by the siRNAs, respectively. However, unlike the extensively studied multisubunit Pol II, our current knowledge about Pol IV and Pol V is restricted to only the two largest subunits NRPD1a/NRPD1 and NRPD1b/NRPE1 and the one second-largest subunit NRPD2a. It is unclear whether other subunits may be required for the functioning of Pol IV and Pol V in RdDM. From a genetic screen for second-site suppressors of the DNA demethylase mutant ros1, we identified a new component (referred to as RDM2) as well as seven known components (NRPD1, NRPE1, NRPD2a, AGO4, HEN1, DRD1, and HDA6) of the RdDM pathway. The differential effects of the mutations on two mechanistically distinct transcriptional silencing reporters suggest that RDM2, NRPD1, NRPE1, NRPD2a, HEN1, and DRD1 function only in the siRNA-dependent pathway of transcriptional silencing, whereas HDA6 and AGO4 have roles in both siRNA-dependent and -independent pathways of transcriptional silencing. In the rdm2 mutants, DNA methylation and siRNA accumulation were reduced substantially at loci previously identified as endogenous targets of Pol IV and Pol V, including 5S rDNA, MEA-ISR, AtSN1, AtGP1, and AtMU1. The amino acid sequence of RDM2 is similar to that of RPB4 subunit of Pol II, but we show evidence that RDM2 has diverged significantly from RPB4 and cannot function in Pol II. An association of RDM2 with both NRPD1 and NRPE1 was observed by coimmunoprecipitation and coimmunolocalization assays. Our results show that RDM2/NRPD4/NRPE4 is a new component of the RdDM pathway in Arabidopsis and that it functions as part of Pol IV and Pol V

    Effect of biomass on assemblages of large mammals in a seasonally dry forest in the Brazilian Amazonia

    No full text
    Aiming to understand the relationship between body mass and abundance, a community of middle-sized and larger mammals was studied in a seasonally dry forest in the far north of the Brazilian Amazonia. Diurnal and nocturnal surveys were carried out by the line-transect method along a 10-km transect. Data were collected on density, biomass, use of forest types, forest strata, diet and feeding strategies by the mammals. Biomass explained animal abundance better than did body mass across the two forest types: Terra Firme forest and mixed forest. There was a statistically significant positive relationship between the biomass of all the 33 mammals studied and group density, as well as between biomass and group size, in both forests. When terrestrial and arboreal mammals, and also different feeding guilds were considered separately, they exhibited very similar results, where biomass alone was positively associated with group density and group size. The slope of the relationships between body mass and group density, body mass and group size, biomass and group density, and biomass and group size varied considerably, with significant scatter around the regression line. Food and food competition shaped the relationship between animal mass and abundance, and this relationship can even vary widely between assemblages. As a result of competition for the available resources, group density increased with increasing biomass
    corecore