12 research outputs found

    OCT inspection of degenerative and rheumatic tendinous cords

    Get PDF
    Surgical repair of the mitral valve complex presents high mortality rates, strongly dependent on the surgical procedure. Intensity and polarization sensitive OCT are explored as a feasible degradation inspection method for rheumatic and degenerative chords.This work is supported by the “Ministerio de Economía, Industria y Competitividad” (MINECO) under projects DA2TOI (FIS2010-19860), SENSA (TEC2016-76021-C2-2-R), IDIVAL under project DiCuTen (INNVAL16/02) and the “Instituto de Salud Carlos III” (ISCIII) through projects FUSIODERM (DTS15/00238) and CIBERBBN and the co -financed by FEDER funds

    Collagen birefringence assessment in heart chordae tendineae through PS-OCT

    Get PDF
    Degenerative mitral regurgitation is a serious and frequent human heart valve disease. Malfunctioning of this valve brings the left-sided heart through a significant increase of pressure and volume overload. Severe degenerative mitral incompetence generally requires surgical repair or valve replacement with a bioprosthesis or mechanical heart valve. Degenerative disease affects the leaflets or/and the chordae tendineae, which link both leaflets to the papillary muscles. During mitral valve surgical repair, reconstruction of the valve leaflets, annulus and chordae are provided to prevent postoperative recurrence of valve regurgitation. The operative evaluation of the diseased and apparently normal chordae tendineae mainly depends of the surgeon´s experience, without any other objective diagnosis tool. In this work, PS-OCT (Polarization Sensitive-Optical Coherence Tomography) is applied for the first time to evaluate the pathological condition of human chordae coming from the mitral valve. It consists on a prospective study to test the viability of this technique for the evaluation of the collagen core of chords. This core presents a strong birefringence due to the longitudinal and organized arrangement of its collagen bundles. Different densities and organizations of the collagen core translate into different birefringence indicators whose measurement become an objective marker of the core structure. Ex-vivo mitral degenerative chordae tendineae have been analyzed with PS-OCT. Intensity OCT is used to obtain complementary morphological information of the chords. Birefringence results correlate with the previously reported values for human tendinous tissue.The authors thank the “Ministerio de Economía, Industria y Competitividad” (MINECO) for their support in this work under projects DA2TOI (FIS2010-19860), SENSA (TEC2016-76021-C2-2-R), the “Instituto de Salud Carlos III” (ISCIII) through projects FUSIODERM (DTS15/00238) and CIBERBBN and the co-financed by FEDER funds

    OCT assessment of aortic wall degradation for surgical guidance

    Get PDF
    The degradation of the wall in large cardiovascular vessels, such as the aorta artery, induces weakness in the vessel that can lead to the formation of aneurysms and the rupture of the vessel. Characterization of the wall integrity is assessed by OCT for future intraoperative assistance in aneurysm graft surgery interventions. Optical Coherence Tomography (OCT) provides cross sectional images of the wall of the aortic media layer. Wall degradations appear as spatial anomalies in the reflectivity profile through the wall thickness. Wall degradation assessment is proposed by automatic identification and dimensioning of these anomalies within the homogeneous surrounding tissue

    Optical coherence tomography assessment of vessel wall degradation in aneurysmatic thoracic aortas

    Get PDF
    Optical coherence tomographic images of ascending thoracic human aortas from aneurysms exhibit disorders on the smooth muscle cell structure of the media layer of the aortic vessel as well as elastin degradation. Ex-vivo measurements of human samples provide results that correlate with pathologist diagnosis in aneurysmatic and control aortas. The observed disorders are studied as possible hallmarks for aneurysm diagnosis. To this end, the backscattering profile along the vessel thickness has been evaluated by fitting its decay against two different models, a third order polynomial fitting and an exponential fitting. The discontinuities present on the vessel wall on aneurysmatic aortas are slightly better identified with the exponential approach. Aneurysmatic aortic walls present uneven reflectivity decay when compared with healthy vessels. The fitting error has revealed as the most favorable indicator for aneurysm diagnosis as it provides a measure of how uniform is the decay along the vessel thickness.This work has been supported by the Spanish Government through CYCIT projects DA2TOI (FIS2010-19860), TFS (TEC2010-20224-C02-02) and the Alma’s Eguizabal PhD Grant (FPU12/04130

    Identification of vessel wall degradation in ascending thoracic aortic aneurysms with OCT

    Get PDF
    Degradation of the wall of human ascending thoracic aorta has been assessed through Optical Coherence Tomography (OCT). OCT images of the media layer of the aortic wall exhibit micro-structure degradation in case of diseased aortas from aneurysmal vessels. The OCT indicator of degradation depends on the dimension of areas of the media layer where backscattered reflectivity becomes smaller due to a disorder on the morphology of elastin, collagen and smooth muscle cells (SMCs). Efficient pre-processing of the OCT images is required to accurately extract the dimension of degraded areas after an optimized thresholding procedure. OCT results have been validated against conventional histological analysis. The OCT qualitative assessment has achieved a pair sensitivity-specificity of 100%-91.6% in low-high degradation discrimination when a threshold of 4965.88μm2 is selected. This threshold suggests to have physiological meaning. The OCT quantitative evaluation of degradation achieves a correlation of 0.736 between the OCT indicator and the histological score. This in-vitro study can be transferred to the clinical scenario to provide an intraoperative assessment tool to guide cardiovascular surgeons in open repair interventions

    Enhanced delineation of degradation in aortic walls through OCT

    Get PDF
    Degradation of the wall of human ascending thoracic aorta has been assessed through Optical Coherence Tomography (OCT). OCT images of the media layer of the aortic wall exhibit micro-structure degradation in case of diseased aortas from aneurysmal vessels or in aortas prone to aortic dissections. The degeneration in vessel walls appears as low-reflectivity areas due to the invasive appearance of acidic polysaccharides and mucopolysaccharides within a typical ordered microstructure of parallel lamellae of smooth muscle cells, elastin and collagen fibers. An OCT indicator of wall degradation can be generated upon the spatial quantification of the extension of degraded areas in a similar way as conventional histopathology. This proposed OCT marker offers a real-time clinical insight of the vessel status to help cardiovascular surgeons in vessel repair interventions. However, the delineation of degraded areas on the B-scan image from OCT is sometimes difficult due to presence of speckle noise, variable SNR conditions on the measurement process, etc. Degraded areas could be outlined by basic thresholding techniques taking advantage of disorders evidences in B-scan images, but this delineation is not always optimum and requires complex additional processing stages. This work proposes an optimized delineation of degraded spots in vessel walls, robust to noisy environments, based on the analysis of the second order variation of image intensity of backreflection to determine the type of local structure. Results improve the delineation of wall anomalies providing a deeper physiological perception of the vessel wall conditions. Achievements could be also transferred to other clinical scenarios: carotid arteries, aorto-iliac or ilio-femoral sections, intracranial, etc.This work has been supported by the Spanish Government through the CYCIT projects DA2TOI (FIS2010-19860) and FOS4 (TEC2013-47264-C2-1-R)

    Identification of vessel wall anomalies in thoracic aortic aneurysms through optical coherence tomography and gradient-based strategies

    Get PDF
    Optical Coherence Tomography is a natural candidate for imaging biological structures just under tissue surface. Human thoracic aorta from aneurysms reveal elastin disorders and smooth muscle cell alterations when visualizing the media layer of the aortic wall, which is only some tens of microns in depth from surface. The resulting images require a suitable processing to enhance interesting disorder features and to use them as indicators for wall degradation, converting OCT into a hallmark for diagnosis of risk of aneurysm under intraoperative conditions. This work proposes gradient-based digital image processing approaches to conclude this risk. These techniques are believed to be useful in these applications as aortic wall disorders directly affect the refractive index of the tissue, having an effect on the gradient of the tissue reflectivity that conform the OCT image. Preliminary results show that the direction of the gradient contains information to estimate the tissue abnormality score. The detection of the edges of the OCT image is performed using the Canny algorithm. The edges delineate tissue disorders in the region of interest and isolate the abnormalities. These edges can be quantified to estimate a degradation score. Furthermore, the direction of the gradient seems to be a promising enhancement technique, as it detects areas of homogeneity in the region of interest. Automatic results from gradient-based strategies are finally compared to the histopathological global aortic score, which accounts for each risk factor presence and seriousness

    Optical coherence tomography assessment of vessel wall degradation in thoracic aortic aneurysms

    Get PDF
    Optical coherence tomography images of human thoracic aorta from aneurysms reveal elastin disorders and smooth muscle cell alterations when visualizing the media layer of the aortic wall. These disorders can be employed as indicators for wall degradation and, therefore, become a hallmark for diagnosis of risk of aneurysm under intraoperative conditions. Two approaches are followed to evaluate this risk: the analysis of the reflectivity decay along the penetration depth and the textural analysis of a two-dimensional spatial distribution of the aortic wall backscattering. Both techniques require preprocessing stages for the identification of the air–sample interface and for the segmentation of the media layer. Results show that the alterations in the media layer of the aortic wall are better highlighted when the textural approach is considered and also agree with a semiquantitative histopathological grading that assesses the degree of wall degradation. The correlation of the co-occurrence matrix attains a sensitivity of 0.906 and specificity of 0.864 when aneurysm automatic diagnosis is evaluated with a receiver operating characteristic curve

    Identification of human pathological mitral chordae tendineae using polarization-sensitive optical coherence tomography

    Get PDF
    Defects of the mitral valve complex imply heart malfunction. The chordae tendineae (CTs) are tendinous strands connecting the mitral and tricuspid valve leaflets to the papillary muscles. These CTs are composed of organized, wavy collagen bundles, making them a strongly birefringent material. Disorder of the collagen structure due to different diseases (rheumatic, degenerative) implies the loss or reduction of tissue birefringence able to be characterized with Polarization Sensitive Optical Coherence Tomography (PS-OCT). PS-OCT is used to discriminate healthy from diseased chords, as the latter must be excised and replaced in clinical conventional interventions. PS-OCT allows to quantify birefringence reduction in human CTs affected by degenerative and rheumatic pathologies. This tissue optical property is proposed as a diagnostic marker for the identification of degradation of tendinous chords to guide intraoperative mitral valve surgery.Research was funded by Ministerio de Economía, Industria y Competitividad, Gobierno de España, grant numbers FIS2010-19860 (DA2TOI) and TEC2016-76021-C2-2-R (SENSA), Instituto de Salud Carlos III, grant number DTS17-00055 (FUSIODERM), Instituto de Investigación Marqués de Valdecilla (IDIVAL), grant number INNVAL 16/02 (DICUTEN) and INNVAL 18/23 (DAPatOO), University of Cantabria postdoctoral grant, POS-UC-2018-16. Co-funded with FEDER funds

    Detección de anomalías en la pared aortica a través de análisis Hessiano de imágenes de tomografía de coherencia óptica

    Get PDF
    La degradación de la arteria aorta se debe a malformaciones estructurales del tejido. Estas anomalías son visibles en forma de irregularidades y manchas cuando se interroga el tejido con tomografía de coherencia óptica. La delimitación de estas irregularidades es compleja debido a su carencia de forma determinada, ruido de medida y falta de definición de las fronteras. La aplicación de la matriz Hessiana de la imagen permite identificar y delimitar las anomalías de forma precisa
    corecore