2,875 research outputs found
Evolution of Proto-Neutron Stars with Quarks
Neutrino fluxes from proto-neutron stars with and without quarks are studied.
Observable differences become apparent after 10--20 s of evolution.
Sufficiently massive stars containing negatively-charged, strongly interacting,
particles collapse to black holes during the first minute of evolution. Since
the neutrino flux vanishes when a black hole forms, this is the most obvious
signal that quarks (or other types of strange matter) have appeared. The
metastability timescales for stars with quarks are intermediate between those
containing hyperons and kaon condensates.Comment: 4 pages including 4 figures. Version with minor revisions. To be
published in Physical Review Letter
Feedback control of unstable cellular solidification fronts
We present a numerical and experimental study of feedback control of unstable
cellular patterns in directional solidification (DS). The sample, a dilute
binary alloy, solidifies in a 2D geometry under a control scheme which applies
local heating close to the cell tips which protrude ahead of the other. For the
experiments, we use a real-time image processing algorithm to track cell tips,
coupled with a movable laser spot array device, to heat locally. We show,
numerically and experimentally, that spacings well below the threshold for a
period-doubling instability can be stabilized. As predicted by the numerical
calculations, cellular arrays become stable, and the spacing becomes uniform
through feedback control which is maintained with minimal heating.Comment: 4 pages, 4 figures, 1 tabl
Pulsar kicks by anisotropic neutrino emission from quark matter
We discuss an acceleration mechanism for pulsars out of their supernova
remnants based on asymmetric neutrino emission from quark matter in the
presence of a strong magnetic field. The polarized electron spin fixes the
neutrino emission from the direct quark Urca process in one direction along the
magnetic field. We calculate the magnetic field strength which is required to
polarize the electron spin as well as the required initial proto-neutron star
temperature for a successfull acceleration mechanism. In addition we discuss
the neutrino mean free paths in quark as well as in neutron matter which turn
out to be very small. Consequently, the high neutrino interaction rates will
wash out the asymmetry in neutrino emission. As a possible solution to this
problem we take into account effects from colour superconductivity.Comment: 6 pages, 3 figures, poster contribution at the conference "Nuclear
Physics in Astrophysics III",Dresden,March 26-31,200
Ag-coverage-dependent symmetry of the electronic states of the Pt(111)-Ag-Bi interface: The ARPES view of a structural transition
We studied by angle-resolved photoelectron spectroscopy the strain-related
structural transition from a pseudomorphic monolayer (ML) to a striped
incommensurate phase in an Ag thin film grown on Pt(111). We exploited the
surfactant properties of Bi to grow ordered Pt(111)-xMLAg-Bi trilayers with 0 <
x < 5 ML, and monitored the dispersion of the Bi-derived interface states to
probe the structure of the underlying Ag film. We find that their symmetry
changes from threefold to sixfold and back to threefold in the Ag coverage
range studied. Together with previous scanning tunneling microscopy and
photoelectron diffraction data, these results provide a consistent microscopic
description of the coverage-dependent structural transition.Comment: 10 pages, 9 figure
Evidence for Heating of Neutron Stars by Magnetic Field Decay
We show the existence of a strong trend between neutron star surface
temperature and the dipolar component of the magnetic field extending through
three orders of field magnitude, a range that includes magnetars, radio-quiet
isolated neutron stars, and many ordinary radio pulsars. We suggest that this
trend can be explained by the decay of currents in the crust over a time scale
of few Myr. We estimate the minimum temperature that a NS with a given magnetic
field can reach in this interpretation.Comment: 4 pages, 1 figures, version accepted for publication in Phys. Rev.
Let
Evolution of Protoneutron Stars
We study the thermal and chemical evolution during the Kelvin-Helmholtz phase
of the birth of a neutron star, employing neutrino opacities that are
consistently calculated with the underlying equation of state (EOS).
Expressions for the diffusion coefficients appropriate for general relativistic
neutrino transport in the equilibrium diffusion approximation are derived. The
diffusion coefficients are evaluated using a field-theoretical finite
temperature EOS that includes the possible presence of hyperons. The variation
of the diffusion coefficients is studied as a function of EOS and compositional
parameters. We present results from numerical simulations of protoneutron star
cooling for internal stellar properties as well as emitted neutrino energies
and luminosities. We discuss the influence of the initial stellar model, the
total mass, the underlying EOS, and the addition of hyperons on the evolution
of the protoneutron star and upon the expected signal in terrestrial detectors.Comment: 67 pages, 25 figure
New Relativistic Effects in the Dynamics of Nonlinear Hydrodynamical Waves
In Newtonian and relativistic hydrodynamics the Riemann problem consists of
calculating the evolution of a fluid which is initially characterized by two
states having different values of uniform rest-mass density, pressure and
velocity. When the fluid is allowed to relax, one of three possible
wave-patterns is produced, corresponding to the propagation in opposite
directions of two nonlinear hydrodynamical waves. New effects emerge in a
special relativistic Riemann problem when velocities tangential to the initial
discontinuity surface are present. We show that a smooth transition from one
wave-pattern to another can be produced by varying the initial tangential
velocities while otherwise maintaining the initial states unmodified. These
special relativistic effects are produced by the coupling through the
relativistic Lorentz factors and do not have a Newtonian counterpart.Comment: 4 pages, 5 figure
Evolution of Proto-Neutron stars with kaon condensates
We present simulations of the evolution of a proto-neutron star in which
kaon-condensed matter might exist, including the effects of finite temperature
and trapped neutrinos. The phase transition from pure nucleonic matter to the
kaon condensate phase is described using Gibbs' rules for phase equilibrium,
which permit the existence of a mixed phase. A general property of neutron
stars containing kaon condensates, as well as other forms of strangeness, is
that the maximum mass for cold, neutrino-free matter can be less than the
maximum mass for matter containing trapped neutrinos or which has a finite
entropy. A proto-neutron star formed with a baryon mass exceeding that of the
maximum mass of cold, neutrino-free matter is therefore metastable, that is, it
will collapse to a black hole at some time during the Kelvin-Helmholtz cooling
stage.
The effects of kaon condensation on metastable stars are dramatic. In these
cases, the neutrino signal from a hypothetical galactic supernova (distance
kpc) will stop suddenly, generally at a level above the background in
the SuperK and SNO detectors, which have low energy thresholds and backgrounds.
This is in contrast to the case of a stable star, for which the signal
exponentially decays, eventually disappearing into the background. We find the
lifetimes of kaon-condensed metastable stars to be restricted to the range
40--70 s and weakly dependent on the proto-neutron star mass, in sharp contrast
to the significantly larger mass dependence and range (1--100 s) of
hyperon-rich metastable stars.Comment: 25 pages, 14 figures. Submitted to Astrophysical Journa
Hydromagnetic instabilities in protoneutron stars
The stability properties of newly born neutron stars, or proto--neutron
stars, are considered. We take into account dissipative processes, such as
neutrino transport and viscosity, in the presence of a magnetic field. In order
to find the regions of the star subject to different sorts of instability, we
derive the general instability criteria and apply it to evolutionary models of
PNSs. The influence of the magnetic field on instabilities is analyzed and the
critical magnetic field stabilizing the star is obtained. In the light of our
results, we estimate of the maximum poloidal magnetic field that might be
present in young pulsars or magnetars.Comment: 18 pages, 4 figures, to appear in Astrophysical Journa
- …