520 research outputs found

    Optical models of the molecular atmosphere

    Get PDF
    The use of optical and laser methods for performing atmospheric investigations has stimulated the development of the optical models of the atmosphere. The principles of constructing the optical models of molecular atmosphere for radiation with different spectral composition (wideband, narrowband, and monochromatic) are considered in the case of linear and nonlinear absorptions. The example of the development of a system which provides for the modeling of the processes of optical-wave energy transfer in the atmosphere is presented. Its physical foundations, structure, programming software, and functioning were considered

    A Stochastic Model of Space Radiation Transport as a Tool in the Development of Time-Dependent Risk Assessment

    Get PDF
    A new computer model, the GCR Event-based Risk Model code (GERMcode), was developed to describe biophysical events from high-energy protons and heavy ions that have been studied at the NASA Space Radiation Laboratory (NSRL) [1] for the purpose of simulating space radiation biological effects. In the GERMcode, the biophysical description of the passage of heavy ions in tissue and shielding materials is made with a stochastic approach that includes both ion track structure and nuclear interactions. The GERMcode accounts for the major nuclear interaction processes of importance for describing heavy ion beams, including nuclear fragmentation, elastic scattering, and knockout-cascade processes by using the quantum multiple scattering fragmentation (QMSFRG) model [2]. The QMSFRG model has been shown to be in excellent agreement with available experimental data for nuclear fragmentation cross section

    The Use of Pro/Engineer CAD Software and Fishbowl Tool Kit in Ray-tracing Analysis

    Get PDF
    This document is designed as a manual for a user who wants to operate the Pro/ENGINEER (ProE) Wildfire 3.0 with the NASA Space Radiation Program's (SRP) custom-designed Toolkit, called 'Fishbowl', for the ray tracing of complex spacecraft geometries given by a ProE CAD model. The analysis of spacecraft geometry through ray tracing is a vital part in the calculation of health risks from space radiation. Space radiation poses severe risks of cancer, degenerative diseases and acute radiation sickness during long-term exploration missions, and shielding optimization is an important component in the application of radiation risk models. Ray tracing is a technique in which 3-dimensional (3D) vehicle geometry can be represented as the input for the space radiation transport code and subsequent risk calculations. In ray tracing a certain number of rays (on the order of 1000) are used to calculate the equivalent thickness, say of aluminum, of the spacecraft geometry seen at a point of interest called the dose point. The rays originate at the dose point and terminate at a homogenously distributed set of points lying on a sphere that circumscribes the spacecraft and that has its center at the dose point. The distance a ray traverses in each material is converted to aluminum or other user-selected equivalent thickness. Then all equivalent thicknesses are summed up for each ray. Since each ray points to a direction, the aluminum equivalent of each ray represents the shielding that the geometry provides to the dose point from that particular direction. This manual will first list for the user the contact information for help in installing ProE and Fishbowl in addition to notes on the platform support and system requirements information. Second, the document will show the user how to use the software to ray trace a Pro/E-designed 3-D assembly and will serve later as a reference for troubleshooting. The user is assumed to have previous knowledge of ProE and CAD modeling

    Implementation of Law on Pension Provision for Collective Farmers in Sverdlovsk Region (1964-1965)

    Get PDF
    The article is devoted to the problem of pension provision of collective farmers in the USSR. The study was conducted on archival materials with the involvement of Internet sources, as well as scientific and reference literature. The relevance of the topic is determined by its importance for the social sciences, especially for history, sociology and economics. The scientific novelty of the work is seen in the fact that new materials discovered by authors in the funds of these archives are introduced into circulation. The time frame of the article - 1964 and 1965 - is determined by the fact that in this period the state pension provision of collective farmers was introduced. It is claimed that the salaries charged to collective farmers were several times less than the salaries of the majority of urban residents. It is stated that the introduced pensions only to a small extent facilitated the financial situation of the collective farm peasantry. It is claimed that almost all the surveyed collective farmers-pensioners were set a minimum pension. It is proved that the size of disability pensions for farmers initially could not be high. It is concluded that the attitude to the peasantry “on the residual principle” had deep historical roots in the USSR and was based on the well-known concept of Marxist-Leninist theory, which proclaimed the peasantry as a “reactionary” class

    First Measurement of Collectivity of Coexisting Shapes based on Type II Shell Evolution: The Case of 96^{96}Zr

    Full text link
    Background: Type II shell evolution has recently been identified as a microscopic cause for nuclear shape coexistence. Purpose: Establish a low-lying rotational band in 96-Zr. Methods: High-resolution inelastic electron scattering and a relative analysis of transition strengths are used. Results: The B(E2; 0_1^+ -> 2_2^+) value is measured and electromagnetic decay strengths of the secdond 2^+ state are deduced. Conclusions: Shape coexistence is established for 96-Zr. Type II shell evolution provides a systematic and quantitative mechanism to understand deformation at low excitation energies.Comment: 5 pages, 4 figure

    Double-spiral magnetic structure of the Fe/Cr multilayer revealed by nuclear resonance scattering

    Full text link
    We have studied the magnetization depth profiles in a [57Fe(dFe)/Cr(dCr)]x30 multilayer with ultrathin Fe layers and nominal thickness of the chromium spacers dCr 2.0 nm using nuclear resonance scattering of synchrotron radiation. The presence of a broad pure-magnetic half-order (1/2) Bragg reflection has been detected at zero external field. The joint fit of the reflectivity curves and Mossbauer spectra of reflectivity measured near the critical angle and at the "magnetic" peak reveals that the magnetic structure of the multilayer is formed by two spirals, one in the odd and another one in the even iron layers, with the opposite signs of rotation. The double-spiral structure starts from the surface with the almost antiferromagnetic alignment of the adjacent Fe layers. The rotation of the two spirals leads to nearly ferromagnetic alignment of the two magnetic subsystems at some depth, where the sudden turn of the magnetic vectors by ~180 deg (spin-flop) appears, and both spirals start to rotate in opposite directions. The observation of this unusual double-spiral magnetic structure suggests that the unique properties of giant magneto-resistance devices can be further tailored using ultrathin magnetic layers.Comment: 9 pages, 3 figure

    Atmospheric Pressure Plasma Generation System Based on Pulsed Volume Discharge for the Biological Decontamination of a Surface

    Get PDF
    The research introduces a system for pulsed volume discharges ignition at atmospheric pressure within gaps reaching 125 mm. The corona discharge is used for the volume discharge initiation. A damping oscillations pulse generator is used as a high-voltage power supply. The pulse repetition rate reaches 1 kHz, while the rate of damping high-frequency harmonic oscillations can reach megahertz units. The volume discharge electric and spectral characteristics were analyzed. The study revealed that O2+ emission spectrum dominates in the UV region. The potential of using pulsed volume discharge for cleaning biological surfaces was demonstrated in the research. The survival rate for E. coli under the influence of 15 seconds long pulsed volume discharge has decreased by 30 times

    Two-dimensional quantum interference contributions to the magnetoresistance of Nd{2-x}Ce{x}CuO{4-d} single crystals

    Full text link
    The 2D weak localization effects at low temperatures T = (0.2-4.2)K have been investigated in nonsuperconducting sample Nd{1.88}Ce{0.12}CuO{4-d} and in the normal state of the superconducting sample Nd{1.82}Ce{0.18}CuO{4-d} for B>B_c2. The phase coherence time and the effective thickness dd of a conducting CuO_2 layer have been estimated by the fitting of 2D weak localization theory expressions to the magnetoresistivity data for the normal to plane and the in-plane magnetic fields.Comment: 5 pages, 4 postscript figure

    Observation of Multi-Gap Superconductivity in GdO(F)FeAs by Andreev Spectroscopy

    Full text link
    We have studied current-voltage characteristics of Andreev contacts in polycrystalline GdO0.88_{0.88}F0.12_{0.12}FeAs samples with bulk critical temperature Tc{T_c} = (52.5 \pm 1)K using break-junction technique. The data obtained cannot be described within the single-gap approach and suggests the existence of a multi-gap superconductivity in this compound. The large and small superconducting gap values estimated at T = 4.2K are {\Delta}L = 10.5 \pm 2 meV and {\Delta}S = 2.3 \pm 0.4 meV, respectively.Comment: 5 pages, 4 figures, submitted to JETP Letter

    Two Interacting Electrons in a Quasiperiodic Chain

    Full text link
    We study numerically the effect of on-site Hubbard interaction U between two electrons in the quasiperiodic Harper's equation. In the periodic chain limit by mapping the problem to that of one electron in two dimensions with a diagonal line of impurities of strength U we demonstrate a band of resonance two particle pairing states starting from E=U. In the ballistic (metallic) regime we show explicitly interaction-assisted extended pairing states and multifractal pairing states in the diffusive (critical) regime. We also obtain localized pairing states in the gaps and the created subband due to U, whose number increases when going to the localized regime, which are responsible for reducing the velocity and the diffusion coefficient in the qualitatively similar to the non-interacting case ballistic and diffusive dynamics. In the localized regime we find propagation enhancement for small U and stronger localization for larger U, as in disordered systems.Comment: 14 pages Revtex file, 8 figures (split into 19 jpg figures). (postscript versions of the jpg figures are also available upon request) submitted to PR
    corecore