48 research outputs found

    Computational study of the motor neuron protein KIF5A to identify nsSNPs, bioactive compounds, and its key regulators

    Get PDF
    Introduction: Kinesin family member 5A (KIF5A) is a motor neuron protein expressed in neurons and involved in anterograde transportation of organelles, proteins, and RNA. Variations in the KIF5A gene that interfere with axonal transport have emerged as a distinguishing feature in several neurodegenerative disorders, including hereditary spastic paraplegia (HSP10), Charcot-Marie-Tooth disease type 2 (CMT2), and Amyotrophic Lateral Sclerosis (ALS).Methods: In this study, we implemented a computational structural and systems biology approach to uncover the role of KIF5A in ALS. Using the computational structural biology method, we explored the role of non-synonymous Single Nucleotide Polymorphism (nsSNPs) in KIF5A. Further, to identify the potential inhibitory molecule against the highly destabilizing structure variant, we docked 24 plant-derived phytochemicals involved in ALS.Results: We found KIF5AS291F variant showed the most structure destabilizing behavior and the phytocompound “epigallocatechin gallate” showed the highest binding affinity (−9.0 Kcal/mol) as compared to wild KIF5A (−8.4 Kcal/mol). Further, with the systems biology approach, we constructed the KIF5A protein-protein interaction (PPI) network to identify the associated Kinesin Families (KIFs) proteins, modules, and their function. We also constructed a transcriptional and post-transcriptional regulatory network of KIF5A. With the network topological parameters of PPIN (Degree, Bottleneck, Closeness, and MNC) using CytoHubba and computational knock-out experiment using Network Analyzer, we found KIF1A, 5B, and 5C were the significant proteins. The functional modules were highly enriched with microtubule motor activity, chemical synaptic transmission in neurons, GTP binding, and GABA receptor activity. In regulatory network analysis, we found KIF5A post-transcriptionally down-regulated by miR-107 which is further transcriptionally up-regulated by four TFs (HIF1A, PPARA, SREBF1, and TP53) and down-regulated by three TFs (ZEB1, ZEB2, and LIN28A).Discussion: We concluded our study by finding a crucial variant of KIF5A and its potential therapeutic target (epigallocatechin gallate) and KIF5A associated significant genes with important regulators which could decrypt the novel therapeutics in ALS and other neurodegenerative diseases

    Comparative genomic analysis reveals habitat-specific genes and regulatory hubs within the genus Novosphingobium

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in mSystems 2 (2017): e00020-17, doi:10.1128/mSystems.00020-17.Species belonging to the genus Novosphingobium are found in many different habitats and have been identified as metabolically versatile. Through comparative genomic analysis, we identified habitat-specific genes and regulatory hubs that could determine habitat selection for Novosphingobium spp. Genomes from 27 Novosphingobium strains isolated from diverse habitats such as rhizosphere soil, plant surfaces, heavily contaminated soils, and marine and freshwater environments were analyzed. Genome size and coding potential were widely variable, differing significantly between habitats. Phylogenetic relationships between strains were less likely to describe functional genotype similarity than the habitat from which they were isolated. In this study, strains (19 out of 27) with a recorded habitat of isolation, and at least 3 representative strains per habitat, comprised four ecological groups—rhizosphere, contaminated soil, marine, and freshwater. Sulfur acquisition and metabolism were the only core genomic traits to differ significantly in proportion between these ecological groups; for example, alkane sulfonate (ssuABCD) assimilation was found exclusively in all of the rhizospheric isolates. When we examined osmolytic regulation in Novosphingobium spp. through ectoine biosynthesis, which was assumed to be marine habitat specific, we found that it was also present in isolates from contaminated soil, suggesting its relevance beyond the marine system. Novosphingobium strains were also found to harbor a wide variety of mono- and dioxygenases, responsible for the metabolism of several aromatic compounds, suggesting their potential to act as degraders of a variety of xenobiotic compounds. Protein-protein interaction analysis revealed β-barrel outer membrane proteins as habitat-specific hubs in each of the four habitats—freshwater (Saro_1868), marine water (PP1Y_AT17644), rhizosphere (PMI02_00367), and soil (V474_17210). These outer membrane proteins could play a key role in habitat demarcation and extend our understanding of the metabolic versatility of the Novosphingobium species.This work was supported by grants from the Department of Biotechnology (DBT), R.K., S.H., K.P., A.B., and U.S. gratefully acknowledge the National Bureau of Agriculturally Important Microorganisms (NBAIM), Science and Engineering Research Board (SERB), N-PDF (PDF/2015/000062), (PDF/2015, 000319), University Grant Commission (UGC) for the Dr. D. S. Kothari Postdoctoral Fellowship and UGC for providing fellowships, respectively

    SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion

    Get PDF
    Abstract: The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era

    Hamiltonian energy as an efficient approach to identify the significant key regulators in biological networks.

    No full text
    The topological characteristics of biological networks enable us to identify the key nodes in terms of modularity. However, due to a large size of the biological networks with many hubs and functional modules across intertwined layers within the network, it often becomes difficult to accomplish the task of identifying potential key regulators. We use for the first time a generalized formalism of Hamiltonian Energy (HE) with a recursive approach. The concept, when applied to the Apoptosis Regulatory Gene Network (ARGN), helped us identify 11 Motif hubs (MHs), which influenced the network up to motif levels. The approach adopted allowed to classify MHs into 5 significant motif hubs (S-MHs) and 6 non-significant motif hubs (NS-MHs). The significant motif hubs had a higher HE value and were considered as high-active key regulators; while the non-significant motif hubs had a relatively lower HE value and were considered as low-active key regulators, in network control mechanism. Further, we compared the results of the HE analyses with the topological characterization, after subjecting to the three conditions independently: (i) removing all MHs, (ii) removing only S-MHs, and (iii) removing only NS-MHs from the ARGN. This procedure allowed us to cross-validate the role of 5 S-MHs, NFk-B1, BRCA1, CEBPB, AR, and POU2F1 as the potential key regulators. The changes in HE calculations further showed that the removal of 5 S-MHs could cause perturbation at all levels of the network, a feature not discernible by topological analysis alone

    Insight into the effect of inhibitor resistant S130G mutant on physico-chemical properties of SHV type beta-lactamase: a molecular dynamics study.

    No full text
    Bacterial resistance is a serious threat to human health. The production of β-lactamase, which inactivates β-lactams is most common cause of resistance to the β-lactam antibiotics. The Class A enzymes are most frequently encountered among the four β-lactamases in the clinic isolates. Mutations in class A β-lactamases play a crucial role in substrate and inhibitor specificity. SHV and TEM type are known to be most common class A β-lactamases. In the present study, we have analyzed the effect of inhibitor resistant S130G point mutation of SHV type Class-A β-lactamase using molecular dynamics and other in silico approaches. Our study involved the use of different in silico methods to investigate the affect of S130G point mutation on the major physico-chemical properties of SHV type class A β-lactamase. We have used molecular dynamics approach to compare the dynamic behaviour of native and S130G mutant form of SHV β-lactamase by analyzing different properties like root mean square deviation (RMSD), H-bond, Radius of gyration (Rg) and RMS fluctuation of mutation. The results clearly suggest notable loss in the stability of S130G mutant that may further lead to decrease in substrate specificity of SHV. Molecular docking further indicates that S130G mutation decreases the binding affinity of all the three inhibitors in clinical practice

    Comparison of SIFT,PolyPhenand PANTHER Prediction.

    No full text
    <p><sup>a</sup> Pyruvate kinase M2 nsSNPs predicted as damaging by both SIFT,PolyPhen and PANTHER.</p><p>* known mutations of human pyruvate kinase M2.</p><p>Comparison of SIFT,PolyPhenand PANTHER Prediction.</p

    PKM2 Root mean square fluctuation of wild and nsSVPs.

    No full text
    <p>The C-alpha RMF of wild type PKM2 (black), C31F (red), Q310P (green) and S437Y (blue).</p

    Enzyme activity of wild and variants.

    No full text
    <p>Under optimal conditions, the activity assay of purified PK-WT and variant proteins showed ~18% and 55% reduction in C31F and S437Y nsSVPs activities respectively. However, Q310P nsSVP was catalytically dead. Binding of allosteric activator FBP increased the activity up-to 27% and 35% in PKWT and C31F nsSVP, however, showed no increase in activity in S43Y nsSVP.</p
    corecore