89 research outputs found

    Evaluating range-expansion models for calculating nonnative species' expansion rate

    Get PDF
    Species range shifts associated with environmental change or biological invasions are increasingly important study areas. However, quantifying range expansion rates may be heavily influenced by methodology and/or sampling bias. We compared expansion rate estimates of Roesel's bush-cricket (Metrioptera roeselii, Hagenbach 1822), a nonnative species currently expanding its range in south-central Sweden, from range statistic models based on distance measures (mean, median, 95th gamma quantile, marginal mean, maximum, and conditional maximum) and an area-based method (grid occupancy). We used sampling simulations to determine the sensitivity of the different methods to incomplete sampling across the species' range. For periods when we had comprehensive survey data, range expansion estimates clustered into two groups: (1) those calculated from range margin statistics (gamma, marginal mean, maximum, and conditional maximum: similar to 3 km/year), and (2) those calculated from the central tendency (mean and median) and the area-based method of grid occupancy (similar to 1.5 km/year). Range statistic measures differed greatly in their sensitivity to sampling effort; the proportion of sampling required to achieve an estimate within 10% of the true value ranged from 0.17 to 0.9. Grid occupancy and median were most sensitive to sampling effort, and the maximum and gamma quantile the least. If periods with incomplete sampling were included in the range expansion calculations, this generally lowered the estimates (range 16-72%), with exception of the gamma quantile that was slightly higher (6%). Care should be taken when interpreting rate expansion estimates from data sampled from only a fraction of the full distribution. Methods based on the central tendency will give rates approximately half that of methods based on the range margin. The gamma quantile method appears to be the most robust to incomplete sampling bias and should be considered as the method of choice when sampling the entire distribution is not possible

    Dynamically inflated wind models of classical Wolf-Rayet stars

    Get PDF
    Vigorous mass loss in the classical Wolf-Rayet (WR) phase is important for the late evolution and final fate of massive stars. We develop spherically symmetric time-dependent and steady-state hydrodynamical models of the radiation-driven wind outflows and associated mass loss from classical WR stars. The simulations are based on combining the opacities typically used in static stellar structure and evolution models with a simple parametrised form for the enhanced line-opacity expected within a supersonic outflow. Our simulations reveal high mass-loss rates initiated in deep and hot optically thick layers around T\approx 200kK. The resulting velocity structure is non-monotonic and can be separated into three phases: i) an initial acceleration to supersonic speeds ii) stagnation and even deceleration, and iii) an outer region of rapid re-acceleration. The characteristic structures seen in converged steady-state simulations agree well with the outflow properties of our time-dependent models. By directly comparing our dynamic simulations to corresponding hydrostatic models, we demonstrate explicitly that the need to invoke extra energy transport in convectively inefficient regions of stellar structure and evolution models is merely an artefact of enforcing a hydrostatic outer boundary. Moreover, the "dynamically inflated" inner regions of our simulations provide a natural explanation for the often-found mismatch between predicted hydrostatic WR radii and those inferred from spectroscopy. Finally, we contrast our simulations with alternative recent WR wind models based on co-moving frame radiative transfer for computing the radiation force. Since CMF transfer currently cannot handle non-monotonic velocity fields, the characteristic deceleration regions found here are avoided in such simulations by invoking an ad-hoc very high degree of clumping.Comment: 15 pages, 9 figure

    Photocatalytic Activity under Simulated Sunlight of Bi-Modified TiO 2

    Get PDF
    The synthesis of Bi-modified TiO2 thin films, with different Bi contents, is reported. The obtained materials were characterized by energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy (RS), X-ray diffraction (XRD), photoluminescence (PL), and diffuse reflectance spectroscopy (DRS), in order to obtain information on their chemical composition, vibrational features, and optical properties, respectively. Compositional characterization reveals that the bismuth content can be varied in an easy way from 0.5 to 25.4 at. %. Raman results show that the starting material corresponds to the anatase phase of crystalline TiO2, and Bi addition promotes the formation of bismuth titanates, Bi2Ti2O7 at Bi contents of 10.4 at. % and the Bi4Ti3O12 at Bi contents of 21.5 and 25.4 at. %. Optical measurements reveal that the band gap narrows from 3.3 eV to values as low as 2.7 eV. The photocatalytic activity was tested in the degradation reaction of the Malachite Green carbinol base dye (MG) as a model molecule under simulated sunlight, where the most relevant result is that photocatalytic formulations containing bismuth showed higher catalytic activity than pure TiO2. The higher photocatalytic activity of MG degradation of 67% reached by the photocatalytic formulation of 21.5 at. % of bismuth is attributed to the presence of the crystalline phase perovskite-type bismuth titanate, Bi4Ti3O12
    • …
    corecore