14 research outputs found

    Dengue-1 Virus Clade Replacement in Thailand Associated with Enhanced Mosquito Transmission

    Get PDF
    International audienceDengue viruses (DENV) are characterized by extensive genetic diversity and can be organized in multiple, genetically distinct lineages that arise and die out on a regular basis in regions where dengue is endemic. A fundamental question for understanding DENV evolution is the relative extent to which stochastic processes (genetic drift) and natural selection acting on fitness differences among lineages contribute to lineage diversity and turnover. Here, we used a set of recently collected and archived low-passage DENV-1 isolates from Thailand to examine the role of mosquito vector-virus interactions in DENV evolution. By comparing the ability of 23 viruses isolated on different dates between 1985 and 2009 to be transmitted by a present-day Aedes aegypti population from Thailand, we found that a major clade replacement event in the mid-1990s was associated with virus isolates exhibiting increased titers in the vector's hemocoel, which is predicted to result in a higher probability of transmission. This finding is consistent with the hypothesis that selection for enhanced transmission by mosquitoes is a possible mechanism underlying major DENV clade replacement events. There was significant variation in transmission potential among isolates within each clade, indicating that in addition to vector-driven selection, other evolutionary forces act to maintain viral genetic diversity. We conclude that occasional adaptive processes involving the mosquito vector can drive major DENV lineage replacement events

    Entomological risk assessment for dengue virus transmission during 2016-2020 in Kamphaeng Phet, Thailand

    Get PDF
    Individual houses with high risks of dengue virus (DENV) transmission might be a source of virus transmission within the neighborhood. We conducted an entomological risk assessment for DENV transmission at the household level, comprising family cohort members residing in the same location, to assess the risk for dengue virus transmitted by mosquito vectors. The studies were conducted in Kamphaeng Phet Province, Thailand, during 2016–2020. Entomological investigations were performed in 35 cohort families on day 1 and day 14 after receiving dengue case reports. DENV was found in 22 Aedes samples (4.9%) out of 451 tested samples. A significantly higher DENV infection rate was detected in vectors collected on day 1 (6.64%) compared to those collected on day 14 (1.82%). Annual vector surveillance was carried out in 732 houses, with 1002 traps catching 3653 Aedes females. The majority of the 13,228 water containers examined were made from plastic and clay, with used tires serving as a primary container, with 59.55% larval abundance. Larval indices, as indicators of dengue epidemics and to evaluate disease and vector control approaches, were calculated. As a result, high values of larval indices indicated the considerably high risk of dengue transmission in these communities

    Field evaluation of two commercial mosquito traps baited with different attractants and colored lights for malaria vector surveillance in Thailand

    No full text
    Abstract Background Sampling for adult mosquito populations is a means of evaluating the efficacy of vector control operations. The goal of this study was to evaluate and identify the most efficacious mosquito traps and combinations of attractants for malaria vector surveillance along the Thai-Myanmar border. Methods In the first part of the study, the BG-Sentinel™ Trap (BGS Trap) and Centers for Disease Control and Prevention miniature light trap (CDC LT) baited with different attractants (BG-lure® and CO2) were evaluated using a Latin square experimental design. The six configurations were BGS Trap with BG-lure, BGS Trap with BG-lure plus CO2, BGS Trap with CO2, CDC LT with BG-lure, CDC LT with BG lure plus CO2, and CDC LT with CO2. The second half of the study evaluated the impact of light color on malaria vector collections. Colors included the incandescent bulb, ultraviolet (UV) light-emitting diode (LED), green light stick, red light stick, green LED, and red LED. Results A total of 8638 mosquitoes consisting of 42 species were captured over 708 trap-nights. The trap types, attractants, and colored lights affected numbers of female anopheline and Anopheles minimus collected (GLM, P < 0.01). Results revealed that BGS Trap captured many anophelines but was significantly less than the CDC LT. The CDC LT, when baited with BG-lure plus CO2 captured the greatest number of anopheline females with a catch rate significantly higher than the CDC LT baited with BG-lure or CO2 alone (P < 0.05). The number of anopheline females collected from the CDC LT baited with CO2 was greater than the CDC LT baited with BG-lure (646 vs 409 females). None of the alternative lights evaluated exceeded the performance of the incandescent light bulb in terms of the numbers of anopheline and An. minimus collected. Conclusion We conclude that the CDC LT augmented with an incandescent light shows high potential for malaria vector surveillance when baited with CO2 and the BG-lure in combination and can be effectively used as the new gold standard technique for collecting malaria vectors in Thailand

    Differential Susceptibility of Two Field Aedes aegypti Populations to a Low Infectious Dose of Dengue Virus.

    Get PDF
    International audienceBACKGROUND: The infectious dose required to infect mosquito vectors when they take a blood meal from a viremic person is a critical parameter underlying the probability of dengue virus (DENV) transmission. Because experimental vector competence studies typically examine the proportion of mosquitoes that become infected at intermediate or high DENV infectious doses in the blood meal, the minimum blood meal titer required to infect mosquitoes is poorly documented. Understanding the factors influencing the lower infectiousness threshold is epidemiologically significant because it determines the transmission potential of humans with a low DENV viremia, possibly including inapparent infections, and during the onset and resolution of the viremic period of acutely infected individuals. METHODOLOGY/PRINCIPAL FINDINGS: We compared the susceptibility of two field-derived Aedes aegypti populations from Kamphaeng Phet, Thailand when they were orally exposed to low titers of six DENV-2 isolates derived from the serum of naturally infected humans living in the same region. The infectious dose, time-point post-blood feeding, viral isolate and mosquito population, were significant predictors of the proportion of mosquitoes that became infected. Importantly, the dose-response profile differed significantly between the two Ae. aegypti populations. Although both mosquito populations had a similar 50% oral infectious dose (OID50), the slope of the dose-response was shallower in one population, resulting in a markedly higher susceptibility at low blood meal titers. CONCLUSIONS/SIGNIFICANCE: Our results indicate that mosquitoes in nature vary in their infectious dose-response to DENV. Thus, different mosquito populations have a differential ability to acquire DENV infection at low viremia levels. Future studies on human-to-mosquito DENV transmission should not be limited to OID50 values, but rather they should be expanded to account for the shape of the dose-response profile across a range of virus titers

    Logistic fits of the observed dose-responses.

    No full text
    <p>The percentage of mosquitoes found virus-positive 7 days (<b>A</b>) and 14 days (<b>B</b>) after oral challenge is shown as a function of the blood meal titer for all combinations of two <i>Ae. aegypti</i> populations (NB =  Na Bo Kham; NC =  Nakhon Chum) and six DENV-2 virus isolates (experiment 1: isolates 29, 54, 66 and 67; experiment 2: isolates 50 and 51). Symbols represent empirical data and lines are logistic fits of the data. Solid symbols and lines correspond to the NB population; Open symbols and dashed lines represent the NC population. Note that the logistic fit of the 51-NB pair at day 14 was omitted from the figure because parameter estimates were unstable.</p

    Multifactorial logistic regression of infection status.

    No full text
    <p>Significant <i>P</i>-values (<0.05) are in bold. df: degrees of freedom; L-R: likelihood ratio.</p
    corecore