6 research outputs found

    Leonurine Improves Age-Dependent Impaired Angiogenesis: Possible Involvement of Mitochondrial Function and HIF-1α Dependent VEGF Activation

    Full text link
    To facilitate the understanding of Invar effects and design of FeNiCo-base Invar alloys characterized by low thermal expansion coefficient (TEC), we investigated the magnetic and thermal expansion behavior of an equiatomic prototype medium entropy alloy FeNiCo and a non-equiatomic (super Invar)Fe63Ni32Co5 (at. %)reference alloy by means of experiments and ab initio calculations. Both alloys consist of a single face-centered cubic phase with fully recrystallized microstructure in the homogenized state. Large spontaneous volume magnetostriction is observed in both alloys below their respective Curie temperatures. The Invar effect in the non-equiatomic Fe63Ni32Co5 alloy is of step-type with nearly zero TEC over a wide temperature range (from room temperature to 120 °C)below its Curie temperature. The equiatomic FeNiCo alloy shows a peak-type Invar effect in a very narrow temperature range (from ∼675 °C to ∼730 °C)with relatively low TECs. The equiatomic FeNiCo alloy shows both higher saturation magnetization and Curie temperature than the non-equiatomic Fe63Ni32Co5 alloy. The relationships among magnetic behavior, spontaneous volume magnetostriction and Invar effects for a wider array of metallic alloys are discussed mainly based on Masumoto's rule combined with Wohlfarth's itinerant electron theory. An Invar alloy search map is constructed based on the present results and available literature data to visualize the relationships among saturation magnetization, Curie temperature and thermal expansion coefficient for a wide range of Invar alloys. Based on this treasure map a design route for further developments of new Invar alloys by tuning their magnetic properties is discussed.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.(OLD) MSE-

    Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels

    No full text
    For decades, grain boundary engineering has proven to be one of the most effective approaches for tailoring the mechanical properties of metallic materials, although there are limits to the fineness and types of microstructures achievable, due to the rapid increase in grain size once being exposed to thermal loads (low thermal stability of crystallographic boundaries). Here, we deploy a unique chemical boundary engineering (CBE) approach, augmenting the variety in available alloy design strategies, which enables us to create a material with an ultrafine hierarchically heterogeneous microstructure even after heating to high temperatures. When applied to plain steels with carbon content of only up to 0.2 weight %, this approach yields ultimate strength levels beyond 2.0 GPa in combination with good ductility (>20%). Although demonstrated here for plain carbon steels, the CBE design approach is, in principle, applicable also to other alloys.Novel Aerospace Material

    Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion

    Get PDF
    Severe lattice distortion is a core effect in the design of multiprincipal element alloys with the aim to enhance yield strength, a key indicator in structural engineering. Yet, the yield strength values of medium- and high-entropy alloys investigated so far do not substantially exceed those of conventional alloys owing to the insufficient utilization of lattice distortion. Here it is shown that a simple VCoNi equiatomic medium-entropy alloy exhibits a near 1 GPa yield strength and good ductility, outperforming conventional solid-solution alloys. It is demonstrated that a wide fluctuation of the atomic bond distances in such alloys, i.e., severe lattice distortion, improves both yield stress and its sensitivity to grain size. In addition, the dislocation-mediated plasticity effectively enhances the strength–ductility relationship by generating nanosized dislocation substructures due to massive pinning. The results demonstrate that severe lattice distortion is a key property for identifying extra-strong materials for structural engineering applications.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.(OLD) MSE-

    Unveiling the mechanism of abnormal magnetic behavior of FeNiCoMnCu high-entropy alloys through a joint experimental-theoretical study

    No full text
    We combined experimental investigations and theoretical calculations to unveil an abnormal magnetic behavior caused by addition of the nonmagnetic element Cu in face-centered-cubic FeNiCoMn-based high-entropy alloys (HEAs). Upon Cu addition, the probed HEAs show an increase of both Curie temperature and saturation magnetization in as-cast and homogenized states. Specifically, the saturation magnetization of the as-cast HEAs at room temperature increases by 77% and 177% at a Cu content of 11 and 20 at. %, respectively, compared to the as-cast equiatomic FeNiCoMn HEA without Cu. The increase in saturation magnetization of the as-cast HEAs is associated with the formation of an Fe-Co rich phase in the dendritic regions. For the homogenized HEAs, the magnetic state at room temperature transforms from paramagnetism to ferromagnetism after 20 at. % Cu addition. The increase of the saturation magnetization and Curie temperature cannot be adequately explained by the formation of Cu enriched zones according to atom probe tomography analysis. Ab initio calculations suggest Cu plays a pivotal role in the stabilization of a ferromagnetic ordering of Fe, and reveal an increase of the Curie temperature caused by Cu addition which agrees well with the experimental results. The underlying mechanism behind this phenomenon lies in a combined change in unit-cell volume and chemical composition and the related energetic stabilization of the magnetic ordering upon Cu alloying as revealed by theoretical calculations. Thus, the work unveils the mechanisms responsible for the Cu effect on the magnetic properties of FeNiCoMn HEAs, and suggests that nonmagnetic elements are also crucial to tune and improve magnetic properties of HEAs.(OLD) MSE-

    Beyond Solid Solution High-Entropy Alloys: Tailoring Magnetic Properties via Spinodal Decomposition

    Get PDF
    Since its first emergence in 2004, the high-entropy alloy (HEA) concept has aimed at stabilizing single- or dual-phase multi-element solid solutions through high mixing entropy. Here, this strategy is changed and renders such massive solid solutions metastable, to trigger spinodal decomposition for improving the alloys’ magnetic properties. The motivation for starting from a HEA for this approach is to provide the chemical degrees of freedom required to tailor spinodal behavior using multiple components. The key idea is to form Fe-Co enriched regions which have an expanded volume (relative to unconstrained Fe-Co), due to coherency constraints imposed by the surrounding HEA matrix. As demonstrated by theory and experiments, this leads to improved magnetic properties of the decomposed alloy relative to the original solid solution matrix. In a prototype magnetic FeCoNiMnCu HEA, it is shown that the modulated structures, achieved by spinodal decomposition, lead to an increase of the Curie temperature by 48% and a simultaneous increase of magnetization by 70% at ambient temperature as compared to the homogenized single-phase reference alloy. The findings thus open a pathway for the development of advanced functional HEAs.(OLD) MSE-

    Current challenges and opportunities in microstructure-related properties of advanced high-strength steels

    Get PDF
    This is a viewpoint paper on recent progress in the understanding of the microstructure–property relations of advanced high-strength steels (AHSS). These alloys constitute a class of high-strength, formable steels that are designed mainly as sheet products for the transportation sector. AHSS have often very complex and hierarchical microstructures consisting of ferrite, austenite, bainite, or martensite matrix or of duplex or even multiphase mixtures of these constituents, sometimes enriched with precipitates. This complexity makes it challenging to establish reliable and mechanism-based microstructure–property relationships. A number of excellent studies already exist about the different types of AHSS (such as dual-phase steels, complex phase steels, transformation-induced plasticity steels, twinning-induced plasticity steels, bainitic steels, quenching and partitioning steels, press hardening steels, etc.) and several overviews appeared in which their engineering features related to mechanical properties and forming were discussed. This article reviews recent progress in the understanding of microstructures and alloy design in this field, placing particular attention on the deformation and strain hardening mechanisms of Mn-containing steels that utilize complex dislocation substructures, nanoscale precipitation patterns, deformation-driven transformation, and twinning effects. Recent developments on microalloyed nanoprecipitation hardened and press hardening steels are also reviewed. Besides providing a critical discussion of their microstructures and properties, vital features such as their resistance to hydrogen embrittlement and damage formation are also evaluated. We also present latest progress in advanced characterization and modeling techniques applied to AHSS. Finally, emerging topics such as machine learning, through-process simulation, and additive manufacturing of AHSS are discussed. The aim of this viewpoint is to identify similarities in the deformation and damage mechanisms among these various types of advanced steels and to use these observations for their further development and maturation.(OLD) MSE-
    corecore