5 research outputs found

    Discrete Event Simulation of Distributed Team Communication Architecture

    Get PDF
    As the United States Department of Defense continues to increase the number of Remotely Piloted Aircraft (RPA) operations overseas, improved Human Systems Integration becomes increasingly important. RPA systems rely heavily on distributed team communications determined by systems architecture. Two studies examine the effects of systems architecture on operator workload of US Air Force MQ-1/9 operators. The first study ascertains the effects of communication modality changes on mental workload using the Improved Research Integration Pro (IMPRINT) software tool to estimate pilot workload. Allocation of communication between modalities minimizes workload. The second study uses IMPRINT to model Mission Intelligence Controllers (MICs) and the effect of the system architecture upon them. Four system configurations were simulated for four mission activity levels. Mental workload, monitoring time and the number of delayed tasks were estimated to determine the effect of changing system architecture parameters. Literature and MIC interviews provided parameters for the model. The analysis demonstrates that the proposed changes have significant effects which, in some conditions, bring the overall workload function toward a proposed theoretical optimum

    Allocation of Communications to Reduce Mental Workload

    Get PDF
    As the United States Department of Defense continues to increase the number of Remotely Piloted Aircraft (RPA) operations overseas, improved Human Systems Integration becomes increasingly important. Manpower limitations have motivated the investigation of Multiple Aircraft Control (MAC) configurations where a single pilot controls multiple RPAs simultaneously. Previous research has indicated that frequent, unpredictable, and oftentimes overwhelming, volumes of communication events can produce unmanageable levels of system induced workload for MAC pilots. Existing human computer interface design includes both visual information with typed responses, which conflict with numerous other visual tasks the pilot performs, and auditory information that is provided through multiple audio devices with speech response. This paper extends previous discrete event workload models of pilot activities flying multiple aircraft. Specifically, we examine statically reallocating communication modality with the goal to reduce and minimize the overall pilot cognitive workload. The analysis investigates the impact of various communication reallocations on predicted pilot workload, measured by the percent of time workload is over a saturation threshold

    Medical Complications of Drug Abuse

    No full text

    Critical Works and Secondary Literature

    No full text
    corecore