
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-22-2012

Discrete Event Simulation of Distributed Team
Communication Architecture
Travis J. Pond

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Systems Engineering Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Pond, Travis J., "Discrete Event Simulation of Distributed Team Communication Architecture" (2012). Theses and Dissertations. 1284.
https://scholar.afit.edu/etd/1284

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1284&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=scholar.afit.edu%2Fetd%2F1284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1284?utm_source=scholar.afit.edu%2Fetd%2F1284&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


DISCRETE EVENT SIMULATION OF
DISTRIBUTED TEAM COMMUNICATION

THESIS

Travis J. Pond, 2nd Lieutenant, USAF

AFIT/GSE/ENV/12-M07

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED



/

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense,
or the United States Government. This material is declared a work of the U.S.
Government and is not subject to copyright protection in the United States.



AFIT/GSE/ENV/12-M07

DISCRETE EVENT SIMULATION OF DISTRIBUTED TEAM

COMMUNICATION

THESIS

Presented to the Faculty

Department of Systems Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Systems Engineering

Travis J. Pond, BSE

2nd Lieutenant, USAF

March 2012

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED



AFIT/GSE/ENV/12-M07

DISCRETE EVENT SIMULATION OF DISTRIBUTED TEAM

COMMUNICATION

Travis J. Pond, BSE
2nd Lieutenant, USAF

Approved:

Michael E. Miller (Chairman) Date

John M. Colombi (Member) Date

Randall W. Gibb (Member) Date



AFIT/GSE/ENV/12-M07

Abstract

As the United States Department of Defense continues to increase the number of

Remotely Piloted Aircraft (RPA) operations overseas, improved Human Systems In-

tegration becomes increasingly important. RPA systems rely heavily on distributed

team communications determined by systems architecture. Two studies examine the

effects of systems architecture on operator workload of US Air Force MQ-1/9 oper-

ators. The first study ascertains the effects of communication modality changes on

mental workload using the Improved Research Integration Pro (IMPRINT) software

tool to estimate pilot workload. This study shows that, through the proper allocation

of communication between modalities, workload can be reduced. The second study

uses IMPRINT to model Mission Intelligence Controllers (MICs) and the effect of

the system architecture upon them. Four system configurations were simulated for

four mission activity levels. Mental workload, monitoring time and the number of

delayed tasks were estimated to determine the effect of changing system architecture

parameters. Literature and MIC interviews provided parameters for the model. The

analysis demonstrates that the proposed changes have significant effects on workload

and system monitoring time.
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DISCRETE EVENT SIMULATION OF DISTRIBUTED TEAM

COMMUNICATION

I. Introduction

The U.S. Department of Defense (DoD) has been a major developer of RPA tech-

nology which it has used primarily for intelligence operations. The DoD continues

to fund RPA development, even in an otherwise austere acquisitions environment

(Defense, 2011). Congress has passed legislation to begin integration of civil and

commercial RPAs into the national airspace system (House., 2011).

This research makes a case for including communication requirements in future

system designs through two studies which examine the effects of architecture changes

on communication related workload. The Improved Research Integration (IMPRINT)

software tool was used to create executable communications architecture models in

both studies. The models draw from the experiences of qualified MQ-1 Predator and

MQ-9 Reaper operators interviewed by the author, and represent the systems they

use.

MQ-1 and MQ-9 operators currently use military internet relay chat (mIRC),

radio and intercom systems to communicate with co-located and distributed teams.

Modalities are fixed in current operations, meaning that vocal messages are always

heard and visual messages are always seen. The first study is centered around the MQ

pilot and explores the ramifications of being able to shift message allocation between

the auditory-verbal and visual-verbal channels. It is assumed that communication

arriving on one channel could be reallocated to another channel. Reallocation could

presumably occur as a result of automation or policy changes to the way users employ

1



communication channels within the network. This allocation change shifts the mental

resource demand, which changes the workload induced by the system.

The second study examines the effects of architecture changes on workload for

the mission intelligence coordinator (MIC). Changing the number of communication

nodes and exclusion of secondary navigation tasks constitute potential system design

changes. The current systems and design changes are modeled to determine the effects

of the changes.

Effective and efficient communication is foundational to military strength and is

especially important in mission areas where many of the collaborators are distributed

around the globe yet must communicate in real time to complete the mission objec-

tives. Future system requirements will need to reflect cognizance of how communica-

tions overhead and team structure can influence workload and mission performance.
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II. Communication Modality Allocation

This paper was presented at the Conference of Systems Engineering Research

(CSER) in St. Louis, Missouri on March 23, 2012.

Allocation of Communications to Reduce Mental Workload

Travis Pond*, Brandon Webster, John Machuca, John Colombi, Michael Miller,

Randall Gibb

Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, 45433,

USA

Abstract As the United States Department of Defense (DOD) continues to in-

crease the number of Remotely Piloted Aircraft (RPA) operations overseas, improved

Human Systems Integration (HSI) becomes increasingly important. Manpower limi-

tations have motivated the investigation of Multiple Aircraft Control (MAC) configu-

rations where a single pilot controls multiple RPAs simultaneously. Previous research

has indicated that frequent, unpredictable, and oftentimes overwhelming, volumes of

communication events can produce unmanageable levels of system induced workload

for MAC pilots. Existing human computer interface design includes both visual infor-

mation with typed responses, which conflict with numerous other visual tasks the pilot

performs, and auditory information that is provided through multiple audio devices

with speech response. This paper extends previous discrete event workload models of

pilot activities flying multiple aircraft. Specifically, we examine statically reallocat-

ing communication modality with the goal to reduce, and minimize, the overall pilot

cognitive workload. The analysis investigates the impact of various communication

reallocations on predicted pilot workload, measured by the percent of time workload

is over a saturation threshold.
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2.1 Introduction

Over the past several decades, the US Air Force has harnessed and exploited

the immense tactical power that middle and high-altitude Remotely Piloted Aircraft

(RPAs) bring to the battlefield. As a consequence, the demand for RPA operational

support continues to increase. It is important to realize that RPAs are part of a com-

plex system. The system has many components including one or more air vehicles,

ground control stations (GCS) for both primary mission control and takeoff/landing,

a suite of communications (including intercom, chat, radios, phones, a satellite link,

etc), support equipment, and operations and maintenance crews (USAF Air Combat

Command, 2010). It goes without saying that the assets and requisite resources to

support those operations are far from unlimited and personnel resources, particularly

RPA pilots, often prove a nontrivial constraint. This inevitably leads innovators to

seek out RPA force-multiplying efficiencies to assist in bridging the resource/demand

gap. One such efficiency being pursued is simultaneous control of multiple aircraft by

a single pilot, or Multi Aircraft Control (MAC). This concept of operations has been

documented in the US Air Force UAV flight Plan (USAF, 2009), which calls for future

systems in which a single pilot will simultaneously control multiple RPA to enable

increased aerial surveillance without increasing pilot manpower requirements. Previ-

ous research on the cognitive workload experienced by pilots during MAC indicated

that frequent, unpredictable, and oftentimes overwhelming volumes of communica-

tion events are able to produce unmanageable levels of system induced workload for

4



MAC pilots (Schneider and McGrogan, 2011). To further investigate this identified

problem, our study makes use of IMPRINT Pro, a Multiple Resource Theory (MRT)

based dynamic, stochastic simulation to analyze impacts to cognitive workload by a

disciplined communication modality reallocation construct.

2.2 Background

In the RPA domain, communication is a continuous and demanding process.

Crews must track information on weather, threats, mission tasking, mission coordi-

nation, target coordination, airspace coordination, fleet management, and status and

location of any friendly units, etc. The RPA pilot is not only responsible for aircraft

control but is also a critical member in a multi-path communications infrastructure

(MITRE, 2009). In the ground station, communication with the pilot takes place in

one of two modalities: textual chat window(s) or the speech-based radio systems. At

any given moment, a pilot may need to monitor multiple chat windows and listen to

numerous parties operate over the radio. The multitude of communication sources

and different media coupled with the quick inter-arrival rate of these events during

a dynamic scenario drives an incredible cognitive workload for the pilot. Cognitive

or mental workload expresses the task demands placed on an operator (Beevis et al.,

1999). Task demand, or task load, often considers the goals to be achieved by the op-

erator, the time available to perform the tasks necessary to accomplish the goals, and

the performance level of the operator (Hardman et al., 2008). Therefore, workload

increases when the number or difficulty of tasks necessary to perform a goal increase,

or when the times allotted to complete these tasks decrease. Assuming that the op-

erator has a given amount of mental resources (e.g., attention, memory, etc.) that he

or she can utilize to complete the necessary tasks, mental workload corresponds to

the proportion of the operators mental resources demanded by a task or set of tasks.
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Several methods have been employed to measure and quantify mental workload over

the past four decades and have been summarized in numerous publications (Beevis

et al., 1999; Gawron, 2008; Hardman et al., 2008). The current analysis incorporates

Multi Resource Theory (MRT) into the workload calculations to account for channel

conflict driven workload. As a theory, MRT purports the existence of four mental

dimensions (or channels) available to process information and perform tasks. The

channels include the stages of processing dimension, the codes of processing dimen-

sion, the modalities dimension and the visual channels dimension. These channels are

allocated to concurrent tasks with the difficulty of the tasks and the demand conflict

between channels driving the overall mental workload value (Wickens, 2008). MRT

falls in line with the concurrent nature of tasks imposed on an RPA pilot (performing

primary tasks while communicating and monitoring communication) and is therefore

an appropriate theory to apply to the present analysis.

2.3 Method

Having discussed communication events and the incorporation of MRT, it can

be seen that the specific channels employed by the modeled communication events

will be highly relevant to the MRT workload calculations. As communication events

begin to conflict with existing work activities on the various channels, the calculated

overall cognitive workload will account for such conflicts. This construct postures

the analysis to be able to address the question of whether or not adjusting the in-

tentional allocation of communication events to particular modalities will be able to

meaningfully affect overall cognitive workload.
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2.3.1 Model.

A previous model of pilot mental workload Schneider and McGrogan (2011) was

utilized to understand the impact of communications modality. This model employed

functional analysis and task allocation to construct an executable architecture of the

multiple RPA system. This architecture was then replicated within the Improved

Performance Research Integration Tool (IMPRINT) to estimate the pilots workload

under various mission segments, such as handover, transit, emergency, benign and

dynamic surveillance, etc. This model relied on Subject Matter Expert (SME) input

to develop distributions for the length, frequency, and difficulty of the events that

induce workload on the pilot. The original research on this model indicated that

workload was particularly high during what were termed dynamic mission segments.

These mission segments often involve high levels of communication between the pilot

and external actors to facilitate the tracking or observation of moving targets. High

levels of communication resulted in particularly high pilot workload while operating

a single aircraft and, excessive workload while controlling multiple dynamic-mission

aircraft. The original research indicated that a reduction in pilot workload imposed

by communication would be necessary to facilitate MAC. To understand the poten-

tial impact of communication modality on operator workload, the communications

portion of the earlier workload model was modified to permit communications events

to be reallocated to alternate communications modalities. The revised model per-

mits communication events that were originally allocated to the auditory channels

where the operator listens and speaks to the visual and fine motor channels where

the operator reads and types, or vice versa.

Figure 1 depicts the high level structure of the revised communications model.

The gray highlighted elements indicate model elements that were added to facilitate

this particular evaluation. As shown, in the original communication model, commu-
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nication events were generated with a mission segment dependent frequency. As a

communication event was generated, it was assigned as either an auditory event or a

text-based event with 25% of the events being allocated as auditory events and the

remaining allocated as text events. Half of the auditory events then required the pilot

to talk or listen while 90% of the text events required the pilot to read while only 10%

of the events required the pilot to type a response. Although not shown, it is then

assumed that some percentage of the final events generate a repeat communication

event, indicative of a continued conversation.

Figure 1. Modified Communication Model of Pilot Workload

To conduct the current evaluation, the auditory and text events shown in gray

have the potential to either pass an auditory or text event as a respective auditory

or text event or to convert an auditory event to a text event or convert a text event

to an auditory event. With this modification, it is assumed that the characteristics

of the communication are due to communication needs, such that if a text event in

the original model had a 90% chance of providing an input to the pilot and only a

8



10% chance of an output to the pilot, a text event converted to an auditory event

has a 90% probability to require the pilot to listen and only a 10% probability to

require the pilot to talk. The parameters V (for Voice reallocation) and T (for Text

reallocation) provide the ability to convert auditory or text events to its compliment.

If V and T are both 100%, the revised model equates to the original model. Reducing

either of these parameters permits a portion of one type of communication event to

the converted to the complimentary communication event.

2.3.2 Experimental Design.

For this paper, a total of six “levels” of voice/text allocation were selected such

that the percent of voice communication were varied between 0 and 100 percent. For

levels of voice communications less than 25%, V was varied while T was maintained

at 100%. However, for levels of voice communications greater than 25%, V was

maintained at 100% while T was varied to achieve the desired communications levels.

All analysis was performed for a 10 hour dynamic mission segment with a single

pilot operating the aircraft. Although IMPRINT does not currently have built-in

Monte Carlo functionality, an external batch application was developed to replicate

numerous runs. A total of 10 replications using different random number seeds were

computed to estimate the output statistics. The output of the IMPRINT model was

analyzed to determine the proportion of time that the operator would experience

workload values over a specified task saturation threshold. A workload value of 60

was calibrated to be about the 90% of operator maximum threshold, which indicates

the workload value a pilot can experience without degraded performance. The mean

and variance across the 10 replications for each communication ratio was calculated.

Analysis of Variance (ANOVA) and Tukey post-hoc tests were employed determine

the statistical differences between the average of percent time over threshold.
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2.4 Results

Figure 2 shows the percent time over threshold as a function of the percentage of

voice communication. A one way ANOVA indicated a significant effect of the percent

of voice communication upon the percentage of time over threshold (P < 0.001). As

shown in Figure 1, the percent of time over threshold is reduced as the percent of

voice communication is increased from 0% to 40%. At 40% voice communication the

percent time over threshold is reduced to 24.5% compared to 33.1% with 0% voice

communication. This change is statistically significant. The change in percent time

over threshold is statistically insignificant as the percent of voice communication is

increased from 40% to 60%. This trend indicates that pilot workload is reduced by

the use of both auditory and text-based communications in this system.

Figure 2. Percent Time Over Threshold as the percentage of voice is reallocated
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Results further show that the percent time over threshold is greater at 0% voice

than at 100% voice communications. This might have been expected as reading
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and typing likely conflicted directly with other tasks being performed by the pilot,

including visually monitoring the status and manipulating the controls of the RPAs.

As such workload is highest when all of the communication is allocated entirely to

the visual channel.

2.5 Conclusions

The model indicates that by deliberately allocating communication between au-

ditory and text-based modalities the pilots workload and particularly the percent of

time the pilot operates above their task saturation threshold can be statistically re-

duced. The model shows that the percent of time over threshold is greatest when all

of the communication is allocated to the text-based communications such that zero

percent of the communication is allocated to voice. This type of communication is

most likely to conflict with other tasks involving the visual system to monitor the

RPA and the small motor system, which is used by the pilot to control the RPA.

As communication events are moved from text to auditory, the workload decreases.

However, as more communication is moved to the auditory channel, the percent of

mission time over task saturation threshold then begins to increase. The increase

likely occurs as the auditory tasks begin to overlap and conflict with one another

to increase workload. There appears to be an optimal allocation of communications

between voice and text modalities to achieve the lowest workload given a constant

traffic load. Future research will examine dynamic reallocation of modalities.
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III. Simulation of Distributed Communication

This paper1 is formatted for submission to the International Journal of Human

Factors Modelling and Simulation.

Discrete Event Simulation of Real Time Human Distributed Team

Communication

Travis Pond, Michael Miller, John Colombi, Randall Gibb

Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, 45433,

USA

Abstract

With increasing automation of Remotely Piloted Aircraft (RPA), the capability

for a single operator to fly multiple vehicles may be possible, but improved Human

Systems Integration becomes important. These operations rely heavily on distributed

team communications determined by the systems architecture. This research investi-

gates the effects of systems architecture on operator workload. The Improved Perfor-

mance Research Integration Tool (IMPRINT) was used to estimate workload using

Multiple Resource Theory for four system configurations simulated in four mission ac-

tivity levels. Mental workload, monitoring time and the number of delayed tasks were

estimated to determine the effect of changing the number of communication nodes

and greater automation of navigation tasks. Operator interviews provided stochastic

parameters for the model. The analysis demonstrates that removing the navigation

tasks has a greater effect on task delay and time spent building situation awareness

(SA) than changing the number of communication nodes during high load mission

segments. Changing the number of communication nodes has a greater effect on men-

tal workload than exclusion of the navigation task. System architecture changes have

1This paper was written in UK English
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little effect for mission segments with low load. This research has implications for

future design of RPA or distributed team systems.

3.1 Introduction

The demand for increasingly complex medium altitude remotely piloted aircraft

(RPA) platforms and their maturing capabilities has brought with it an increased

reliance upon distributed team communications. Many U.S. government organiza-

tions, such as the military services, Border Patrol, NASA (NASA, 2011) and the

Department of Homeland Security, have requirements for RPA technology and have

an expressed interest in expanding their respective fleets of RPAs. Civil uses for RPAs

abound (U.S. Government Accountability Office, 2008). However, real time commu-

nication can be burdensome in intense situations, and it can affect the ability of the

pilot and sensor operator to perform their respective primary tasks. Offloading of

communication can keep the RPA operators from becoming task saturated (Wickens

et al., 2003). Communication offloading is accomplished in current U.S. Air Force

(USAF) operations by the addition of mission intelligence coordinators (MIC) who

serve to facilitate external communications. This research uses a cognitive model to

predict MIC workload and inform future communications architecture development

for remotely piloted systems.

In the USAF, network technologies in RPA systems have increased the number of

communication tasks that operators must perform. As a result, operators communi-

cate with more parties more often than with previous radio and land-line telephone

technologies. In situations where both high volumes of communication and high op-

erator workload exist, there may be a correlation between communication and work-

load. The hypothesis of this research is that the current communications architecture

induces high task demand, and resultant workload on the operator. The primary
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research question is: How does communication architecture affect the workload expe-

rienced by a system operator?

A military example was examined to answer this question. This example is extensi-

ble to future civil and commercial systems, some of which already use similar systems.

Implications of this research are important for designing new systems which require

extensive communication between distributed teams requiring real-time communica-

tion. Real-time distributed communication is a cornerstone of military strength and a

boon to many organizations who use or plan to use RPAs; this research addresses ways

in which communication architecture could be improved to allow for more effective

real time distributed communication.

3.2 Background

The background of this research combines literature from several otherwise dis-

parate fields of study in an attempt to bridge the gaps between them and provide a

solid foundation for analysis. First, the premise of workload modelling and its rele-

vance to systems design will be discussed. Background information about the military

example will then be given along with relevant architecture diagrams.

Mental workload is the characterization of limited human mental resource de-

mands (Cain, 2007; Wickens and Yeh, 1986). For the purposes of this research, men-

tal workload is a unit-less and relative measure derived from the combination of tasks

imposed on the human, their respective mental resource demands and the degree to

which the tasks place demands on conflicting or complimentary cognitive channels

(Wickens and Yeh, 1986; Wickens, 2008). Multiple resource theory (MRT) is the

concept that human cognitive resources are divided into multiple attentional ‘pools’,

which are taxed differently depending on task load. Studies showing the extent to

which time sharing or multitasking situations use different cognitive processing struc-
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tures provide scientific evidence for the validity for this theory. A multi-dimensional

model of MRT is given in (Wickens, 2008). The model is essentially an input-process-

output model of human perception, cognition and action with resource distinctions

drawn along modal lines. The codes and modalities of processing distinguish among

resources used for sensory input and working memory. The codes of processing are

spatial and verbal, while the modalities are auditory and visual. The codes and

modalities represent the combinations in which humans perceive information. They

are spatial-auditory, spatial-visual, verbal-auditory and verbal-visual. The stages

of processing represent the modalities of cognitive process resources which are used

to select and execute action, and the responses are manual-spatial or vocal-verbal.

This study examined operator workload for verbal codes of processing, both modal-

ities, and vocal-verbal responses. For example, when an operator receives and sends

chat messages, she perceives them using verbal-visual resources, processes them using

vocal-verbal resources, and responds using vocal-verbal resources.

The method used in this research to predict mental workload using MRT and dis-

crete event simulation is found in Keller et al. (2002). Schneider and McGrogan (2011)

used the Improved Performance Research Integrated Tool (IMPRINT) to implement

the method described in Keller et al. (2002) to predict RPA pilot mental workload.

Workload predictions were used to understand the manpower implications of multiple

aircraft control. To develop the mental model of the pilot, Schneider and McGrogan

created executable architecture to translate the system design into a dynamic model.

Wang and Dagli (2008, pg. 1) notes that “Architecture modeling furnishes abstrac-

tions for use in managing complexities, allowing engineers to visualise the proposed

system and to analyze the problem domain and describe and specify the architecture

for the solution domain.” Architecture modelling methods were used by Schneider

and McGrogan and Mitchell (2000). Schneider and McGrogan’s findings suggest that
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communication is a major source of workload for RPA operators. Mitchell found

that IMPRINT predictions of communication times and frequencies correlated with

recorded communications amongst a platoon of soldiers during a simulated mission.

The architecture modelled in this research is that of U.S. RPA communications,

centered around the MIC, who is part of a distributed team coordinating to complete

remote surveillance missions. According to subject matter experts (SME) there are,

during any given mission, between 10 and 15 external organizations with which the

MIC must communicate regularly; each of these constitutes one network ‘node’. The

RPA crew includes a pilot, a sensor operator, and a supervisor. The MIC provides a

communication buffer between the crew and the other organizations in the commu-

nication network. A diagram of representative nodes in the system is given in Figure

3. The MIC works in the RPA Operations (Ops) Center. The connections between

external nodes, the pilot, and sensor operator are not shown.

Figure 3. Diagram of System Nodes
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Selection of an appropriate modelling tool that supported calculation of human
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mental workload was crucial to the understanding architectural effects on communi-

cation induced workload. IMPRINT2 was selected because of its extensive human

performance modelling capability. An executable system architecture model can be

built within IMPRINT using a functional decomposition to describe task times and

resource demands. IMPRINT provides a common ground between executable sys-

tems architecture and analytical workload modelling. IMRPINT was developed by

the US Army Research Laboratories to support manpower and personnel systems

analysis, but provides the ability to estimate human mental workload. This tool is a

dynamic, stochastic, discrete event network modeling tool based on the Micro Saint

Sharp modeling language (USARL, 2010).

The creation of an IMPRINT model requires the functional decomposition and

allocation of tasks to users or crew members. Workload values are then assigned,

following the process described in Keller et al. (2002), to each resource/interface pair

and then to each task performed by the user. Mental workload values are calcu-

lated based upon multiple resource theory (MRT), which permits the modeling of the

effect of both sequential and concurrent tasks upon human mental workload (Woj-

ciechowski, 2006; Mitchell, 2003). As the model runs, single task demand values are

calculated for each task performed by the user. When multiple tasks are provided to

the user concurrently, competing for limited attentional resources, conflict values are

determined based upon the user’s ability to perform these concurrent tasks. Task de-

mands which lead to conflict produce nonlinear increases in system induced workload

as more tasks are added. The algorithm which IMPRINT uses to calculate mental

workload is a combination of a task-resource assignment method (Keller et al., 2002)

and a complex, dynamic set of summations (Mitchell, 2000).

To construct an IMPRINT model, users, tasks, task arrangement, task times,

2Version 3.1.0.86
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task difficulties, and likely errors must be determined. Each of these model elements

can be deterministic or stochastic in nature. The discrete events in the model then

represent real events and permit a real-time trace of system-induced workload. One

of the important features of IMPRINT is the behavior of the model during times

when the operator is task saturated and unable to simultaneously address all of the

overlapping tasks that are allocated. IMPRINT provides many options, including

computing workload with the assumption that the operator will complete all tasks

even when the workload is beyond their ability. Workload mitigation strategies may

also be modelled, representing ways in which real users might allay the effects of task

overlap and overload. There are four strategies available. When a new task in the

task queue would cause workload to rise above a preset threshold, the user may be

modelled as offloading the new task to a contingent operator, delaying the new task,

dropping the new task from the queue completely, or interrupting the current task to

perform the new task and completing the first task in a window of opportunity.

3.3 Methodology

Four MICs were interviewed to gather input data for the mental workload model.

All four MICs were operationally qualified, 2 were enlisted and 2 were officers, each

with more than two years of operational experience. The first part of the interview

addressed the logical architecture of the system. The questions were designed to

give insight into the MICs’ primary goals, major functions, and the order in which

tasks are performed. These questions also elicited the relationships between major

tasks and external events. The second part of the interview addressed specific tasks,

their respective durations and their respective difficulties and derivative tasks. The

interview questions were designed to depict all tasks which the MIC performs during

a typical shift.
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Data from this effort indicated that during a typical shift, the MIC’s primary

goal is to perform the tasks which are assigned in the pre-mission brief. Typically,

these include posting way-point coordinates in a navigation system visible to nearly

all operators in the area, relaying important information between the pilot and the

other nodes, referencing the mission plan, and acting as an auxiliary monitor of the

full motion video (FMV) feed from the RPA. The MIC also maintains the mission

report for the entire mission and updates it between tasks.

3.3.1 Choice of Dependent and Independent Variables.

Three dependent, two independent, and one system variable were selected to define

the model. Mental workload, monitoring time and the number of delayed events

are the dependent variables while the number of external communication nodes and

exclusion of navigation tasks are independent variables. The arrival rate of units of

activity is a system variable used to compare the effects of the independent variables

across four mission task loading scenarios.

The mean exponential interarrival time of major events, λmaj, was assigned four

levels: 30, 60, 120, and 1200 seconds to represent the variable and unpredictable

nature of real missions. SMEs described missions ranging from overwhelming task

loads (represented by λmaj = 30) to nearly abject boredom (represented by λmaj =

1200). The levels between were selected arbitrarily to provide more resolution near

the busy end of the scale. The number of communication nodes with which the MIC

must communicate is represented by ncomm, and the control value of ten is derived

from Figure 3. The navigation task parameter, Nav has two levels, on and off, to

represent the inclusion (on) or exclusion (off) of the navigation tasks in the model.

The simulation length, TE, was set to 7200 seconds, or two hours. Two hours was

selected as the length at which the system exhibited stable behavior, and variance
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between simulation runs was very low for workload observations.

Mental workload was selected as a dependent variable because of its relevance

to system design. The system modelled in this research primarily requires cognitive

work more than physical work. Mental workload values are calculated using difficulty

ratings for individual tasks, the cognitive resources which those tasks require, the

presence of other tasks, and how much the required resources conflict between the

multiple tasks. Delayed task count is a count of all the tasks which needed to be

delayed by the operator because workload was over a certain threshold, or ‘red line’.

IMPRINT allows users to model both system induced workload with no notion of

the operator and the workload experienced by the operator. All of the conditions

described in the design of experiments were run again with a workload management

strategy, which simulates an operator present who would “[p]erform tasks sequentially,

beginning with ongoing tasks and then performing the next task” (Mitchell, 2000;

Alion Science and Technology, 2011). The delayed task count shows how many of the

tasks during the mission might have been delayed because of high workload.

It is assumed that the operator will monitor up to six computer monitors to detect

changes in information displayed through two networked computer systems during

any available time between other tasks. Monitoring time is the sum of the durations

of monitoring tasks over the course of the two hour mission segment. Specifically,

the monitoring tasks are composed of monitoring a FMV feed, a navigation system,

and up to 15 IRC windows. Monitoring the navigation system is considered both a

navigation task and a monitoring task for the purposes of this research. Monitoring

time represents the ability of the MIC to complete the secondary task of maintaining

situation awareness (SA). SA is defined as the perception and understanding of one’s

environment and the ability to predict the status of the environment in the near

future (ENDSLEY, 1995; Tsang and Vidulich, 2002). The MICs ability to maintain
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an accurate picture of the operational environment is very important to the other

members of the team; system monitoring time is a measure of the ability to allocate

time to this task.

3.3.2 Experimental Design.

The analysis follows a fractional factorial design where each level of ncomm and

Nav are compared at each level of λmaj for each of the three metrics. For a full

analysis of the effects of the independent variables, sixteen mission conditions were

modelled. Each of these sixteen conditions was run five times with workload man-

agement strategies ‘on’ and another five times with workload managements strategies

‘off’. The presence or absence of workload management strategies was not considered

an independent variable; replications with the strategies employed were used to count

the number of delayed tasks. The experimental conditions are listed in Table 1.

Table 1. List of Conditions

Condition ID λmaj ncomm Nav. Task

1 30 10 on
2 30 10 off
3 30 6 on
4 30 6 off
5 60 10 on
6 60 10 off
7 60 6 on
8 60 6 off
9 120 10 on
10 120 10 off
11 120 6 on
12 120 6 off
13 1200 10 on
14 1200 10 off
15 1200 6 on
16 1200 6 off
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The number of replications was determined by following the process outlined in

Banks et al. (2010). Using condition 1, which was thought to be the most variable,

the desired half-widths of the confidence intervals were obtained by completing five

replications for each of the sixteen conditions, resulting in 160 independent repli-

cations. Results were calculated for five random number seeds between 1 and 1000

using a random integer generator function in MATLAB. The half widths were deemed

sufficient if they included no more than ±5% of the mean.

Data groups were compared for purposes of determining meaningful effects. Of

the large set of possible pairwise comparisons, only sixteen were made to determine

the significance of the four system configurations. The two control groups, where

ncomm = 10 and Nav = ‘On’ were compared pairwise with the alternate groups,

where ncomm = 6 and Nav = ‘Off’. These four comparisons were made at each of the

four levels of λmaj.

3.4 Model Description

3.4.1 Assumptions.

It is assumed that a ‘unit’ of activity, such as the observation of a single suspicious

action performed by the surveillance target, constitutes a major event and causes the

MIC to perform communications once for each node in the external system. The

performance of one communication task, e.g. internet relay chat (IRC) or intercom

use, constitutes a minor event. The assumption that one minor event occurs for

each node for each major event is valid for the following reasons: 1) it was reported

by SMEs that all of the mission related communication occurs because of external

events, 2) interviews revealed that during high communication situations, MICs find

themselves communicating ‘constantly’, presumably more often than once per node

per external event. Therefore, the estimate of one communication per node per major
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event is a valid assumption. The model assumes that each major event triggers one

minor communication event for each node.

Another important assumption is that the system would demand that the MICs

handle these communication events sequentially and not simultaneously. Interviews

revealed that when MICs would communicate with some nodes, they would some-

times not receive a response for up to five minutes, meaning that for most of their

communications, response time is not critical within a reasonable window. The in-

terviewees also noted, however, that they communicated constantly during major

events. The duration of major events is increased or decreased by adjusting the ex-

ponentially distributed interarrival times of minor events, λcomm, which represents

the rate at which the system requires the MIC to complete communication tasks.

It was also reported that for a single unit of activity, it took approximately twenty

seconds for the communications to stop. To accurately model the interarrival of mi-

nor communication events, the author modelled a single major event and ten nodes.

Experimentation with the interarrival time of minor communication events led the

author to an assumed exponential arrival rate of one every three seconds to achieve

the twenty second duration of major events. Therefore, λcomm is set to three seconds

for the purpose of this research.

The model includes only the lower level tasks which were determined to be critical

to the communication functions of the MIC. The tasks included in the model are

three monitoring tasks, three sequential tasks related to posting coordinates into the

navigation system, as well as reading, typing, listening and speaking both complex

and simple sentences. The model has represented within it fourteen total MIC tasks.

The tasks are arranged within the model according to the information given in the

interviews and in existing architecture. Task durations and difficulties were assigned

conservatively using the visual, auditory, cognitive and psychomotor (VACP) rating
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scales within IMPRINT (Keller et al., 2002; Alion Science and Technology, 2011).

3.4.2 Structure and Logic.

There are two types of tasks in the model, automated tasks which are not included

in the workload calculation, and operator tasks, which do carry workload values. The

model boundaries are defined by the operator tasks, which are detailed in Table 2,

where normal distribution values are given as µ, σ and triangular values are given

as mode, min, max. The structural tasks represent the system which is external to

the model boundary. Only tasks performed by the MIC are included explicitly, while

external stimuli, which may represent the actions of other operators, are abstracted

to the tasks which they induce the MIC to perform. These external stimuli are

represented as entity generating ‘dummy’ tasks which generate MIC tasks according

to the logic stated above. On its foundational structural level, the model is a queueing

system where entities arrive with exponentially distributed rates, and are ‘processed’

by tasks with normally distributed processing times. These entities represent the

external events. Network edges or stochastic logical code executed during the tasks

determines the entities’ next destinations.
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Table 2. MIC Low-Level Tasks

Task Duration Distribution Duration (seconds) Single Task Demand

Monitor Navigation System Triangular 6, 4, 9 5.0

Monitor FMV Triangular 10, 3, 21 6.0

Monitor mIRC Triangular 6, 4, 9 5.0

Copy Coordinates From mIRC Normal 1.0, 0.25 8.5

Find Navigation System Monitor Normal 1.0, 0.25 4.0

Paste Coordinates into the system Normal 1.0, 0.25 8.5

Read Simple Sentence Normal 2.0, 0.5 5.1

Type Simple Sentence Normal 1.5, 0.5 7.0

Listen to Simple Sentence Normal 2.0, 0.5 3.0

Speak Simple Sentence Normal 1.5, 0.5 2.0

Read Complex Sentence Normal 7.0, 2.0 5.1

Type Complex Sentence Normal 6.0, 2.0 7.0

Listen to Complex Sentence Normal 7.0, 4.0 6.0

Speak Complex Sentence Normal 5.0, 2.0 4.0

3.5 Analysis & Results

3.5.1 Methods of analysis.

Data for each metric was tested for normality; comparison groups were tested for

significant differences. All confidence intervals are calculated at α = 0.05. Lilliefors

tests were conducted on replication means within groups to determine normality. 3

Three-way analysis of variance (ANOVA) tests were performed on group means to

determine which changes had significant effects on the dependent variables. Post-hoc

tests were conducted for added specificity about the differences between conditions.

Distribution of Workload Data. For a given replication, the weighted

mean of workload values where wi represents workload and di represents the duration

3The Lilliefors test was used because it is valid for small sample sizes, where the chi-square test
is not as useful (Lilliefors, 1967). Also, the Lilliefors test is non-parametric, thus the parameters for
the normal distribution against which the sample is tested do not need to be given as they would
be for the one-sample Kolmogorov-Smirnov (KS) test.
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at that workload value is computed by Eq. 1.

w̄ =

∑
wi · di∑
di

(1)

Lillefors tests were performed on each condition to test for normality. Data which

is normally distributed is considered to be the result of a random process, and can

statistically tested as such. The approach used in Eq. 1 to estimate the means was

conducted with the understanding that each shape is different by design. In other

words, because the groups are being compared at levels of λmaj each group has a

similar set of workload spikes and flat periods where low workload occur, though they

occur at different times during the mission within each group. The replications within

each group are similar enough that differences between groups are easily seen from

ANOVA tests, but there is some doubt cast on these tests because of the insensitivity

of weighted averages to equal changes in area under the workload function. Therefore,

an additional test was warranted.

To determine whether there were differences between the conditions, two rounds

of two-sample (KS) tests were conducted. The two-sample KS test computes the

distance between the empirical distribution functions (CDF) of the two samples.

Because two empirical CDFs are being compared, the two-sample KS test is non-

parametric. The null hypothesis for the two-sample KS test is that the two samples

come from the same continuous distribution. The null hypothesis is rejected if the

distance between the two functions is sufficiently large (Darling, 1957). Within each

group, the replications were compared pairwise to determine whether each replication

within the group came from the same continuous distribution. A second set of two-

sample (KS) tests was performed across comparison groups to determine whether the

groups came from different continuous distributions. A comparison of two conditions

is shown in Figure 4.
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Figure 4. Workload CDF for Two Groups
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Monitoring Time & Delayed Tasks. The means of the monitoring times

for each condition were normally distributed within each group. Delayed task counts

were also normally distributed within each group.

3.5.2 Results.

3.5.2.1 3 Way Analysis of Variance Tests.

Each of the three-way ANOVA tests showed that the largest contributor of vari-

ance was λmaj. This was expected; λmaj changes the mission scenario and the essential

shape of the workload function. Only the effects of ncomm and Nav are discussed.

In each case, λmaj exhibited two-way interactions with the other two variables. The

interaction is due to the design of the model; decreasing λmaj necessarily decreases

the number of ncomm events and the number of times the Nav task was executed

in the Nav = ‘On’ cases. In other words, λmaj was purposely linked to the other

variables in an indirect way.
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The three-way ANOVA test for workload showed that ncomm had a significant effect

on weighted workload averages between groups (F = 337.1,P < 0.0001). Nav was

found to not have a significant effect. There was a small three-way interaction between

λmaj, ncomm, and Nav (F = 5.634,P < 0.0001). For monitoring time, the three-

way ANOVA test showed that ncomm had a significant effect between groups (F =

49.38,P < 0.0001). Nav was found to have a much greater effect (F = 822.39,P <

0.0001). There were no other two or three-way interactions. The three-way ANOVA

test for the delayed task count showed that ncomm had a significant effect between

groups (F = 93.59,P < 0.0001). Nav was found to have a slightly greater effect

(F = 102.40,P < 0.0001). There were no other two or three-way interactions.

3.5.2.2 Workload.

Results for workload were mixed. KS tests within groups showed that several

conditions were not composed of replications from same continuous distributions.

These replications were removed before the between groups KS tests were conducted.

28



Figure 5. Weighted Workload Mean Comparison 1
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The effect was greater in the conditions with the navigation task included. Post-

hoc tests showed that changing levels of ncomm was only significant for λmaj of 30, 60,

and 120 seconds. The post-hoc tests showed that the exclusion of the tasks was only

significant in one comparison, at ncomm = 10 and λmaj = 30. Figure 5 and Figure 6

show how changing levels of ncomm and Nav affect weighted mean workload.
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Figure 6. Weighted Workload Mean Comparison 2
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3.5.2.3 Monitoring Time.

Monitoring time results showed that changing levels of ncomm had a greater effect

when the navigation tasks were included in the model. This is partly due to depen-

dency of the metric on the measurement of these tasks. Changing the number of

communication nodes with the navigation task excluded was significant in only one

of the four comparisons, for λmaj = 60. The effect of changing ncomm can be observed

in Figure 7.
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Figure 7. Monitoring Time Comparison 1
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Post-hoc tests showed that excluding the navigation tasks was significant for λmaj

of 30, 60, and 120 seconds. The effect of excluding the navigation tasks can be

observed in Figure 8.
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Figure 8. Monitoring Time Comparison 2
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3.5.2.4 Delayed Events.

Post-hoc tests revealed that the effect of reducing the number of communication

nodes on the number of delayed events was significant for λmaj of 30 seconds in the

Nav = ‘On’ condition. In the Nav = ‘Off’ condition, changing the level of ncomm was

significant to the changes in mean for λmaj of 30, 60, ad 120 seconds.
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Figure 9. Delayed Task Comparison 1
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The post-hoc tests also showed that exclusion of the navigation tasks had a sig-

nificant effect on the number of delayed tasks for both levels of ncomm for λmaj of 30

and 60 seconds. The effect of reducing the number of communication nodes is shown

in Figure 9, while the effects of excluding the navigation tasks are shown in Figure

10.
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Figure 10. Delayed Task Comparison 2
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A multiple comparison of means post-hoc procedure was conducted using the

statistics from the three-way ANOVA tests. The test returns a Bonferroni adjusted

probability that the means are not significantly different. Percent improvement was

calculated using results from the post-hoc tests by calculating the change in mean for

system changes that resulted in statistically significant improvements in each of the

three metrics. These improvements are shown in Table 3. Bold type signifies values

which were significant in post-hoc tests.
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Table 3. System Improvements

Workload Monitoring Time Delayed Tasks Change Constant λmaj

35.42% 5.28% 32.84% Change Nodes from 10 to 6 Nav On 30

24.41% 3.96% 22.53% Change Nodes from 10 to 6 Nav On 60

19.35% 2.69% 47.76% Change Nodes from 10 to 6 Nav On 120

2.58% 0.00% 50.46% Change Nodes from 10 to 6 Nav On 1200

26.18% 2.49% 38.79% Change Nodes from 10 to 6 Nav Off 30

27.35% 2.72% 42.01% Change Nodes from 10 to 6 Nav Off 60

25.94% 1.68% 53.45% Change Nodes from 10 to 6 Nav Off 120

10.36% 0.33% 18.57% Change Nodes from 10 to 6 Nav Off 1200

11.89% 19.97% 35.44% Change Nav from On to Off ncomm=10 30

0.00% 12.60% 36.13% Change Nav from On to Off ncomm=10 60

0.00% 6.79% 34.33% Change Nav from On to Off ncomm=10 120

0.00% 0.00% 63.98% Change Nav from On to Off ncomm=10 1200

0.00% 16.79% 41.16% Change Nav from On to Off ncomm=6 30

0.00% 11.54% 48.27% Change Nav from On to Off ncomm=6 60

3.32% 5.75% 41.47% Change Nav from On to Off ncomm=6 120

0.00% 0.83% 40.80% Change Nav from On to Off ncomm=6 1200

Generally, changing the system architecture resulted in greatest improvement dur-

ing periods of high event frequency (λ = 30, 60 seconds). Little improvement is shown

for changing the system during periods of low event frequency (λ = 120, 1200 sec-

onds).

3.6 Discussion

3.6.1 Conclusions.

Mental workload in a system of distributed teams can be lessened at the sys-

tem level by reducing the number of network nodes with which the operator must

communicate frequently. Mental workload can be decreased to a lesser extent by

decreasing the number of secondary tasks which the system requires the operator to

perform. Reducing the number of secondary tasks has little to no significant effect
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on mental workload if the number of communication nodes is already low. For future

systems, therefore, it would be more beneficial to focus design on reducing the opera-

tor’s communication nodes rather than ensuring that the operator had no secondary

tasks. Additionally, creating an additional node to handle more communication is

most useful for systems which generate communication events with high frequency,

in this case, 10 per 30 seconds.

The amount of time which the operator can use to monitor the system and build

valuable situation awareness is increased effectively by reducing the number of com-

munication nodes or reducing the number of secondary tasks. If the secondary tasks

include monitoring tasks, reducing the number of communication nodes has little

effect if these tasks are already excluded. Reducing the number of communication

nodes and exclusion of secondary tasks both have significant effects in systems with

high frequencies of communication-inducing events. Reducing the number of commu-

nication nodes is more effective if there are no secondary tasks. Reducing the number

of secondary tasks was effective for systems with both levels of communication nodes

at the two higher levels of communication-inducing event frequency, implying that

reducing secondary tasks reduces the probability that tasks will be delayed.

The effective number of communication nodes can be reduced in at least three

ways. This research assumes that a second operator has been introduced in the

ncomm = 6 conditions, and has taken half of the first operators communications

nodes. This configuration is shown in Figure 11. The first operator loses five of

the original nodes and adds one node, which is the second operator, giving a total

of six nodes to each operator, in which case, the original operator is modelled as

simply having four fewer nodes. The nodes in Figure 11 have been reallocated such

that each MIC communicates with a somewhat related set of nodes. Tactical and

intelligence gathering organisations are connected to one MIC, while air traffic con-
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trol and authority organisations are allocated to the other. These allocations would

ideally change dynamically to avoid one MIC being overwhelmed while the other is

bored. This allocation organises information according to the operator’s goal, and

thus promotes situation awareness (Endsley et al., 2003).

Figure 11. Alternate Diagram of System Nodes With Two MICs
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Another way in which the reduction of communication nodes can be achieved is

through automation. The interviewees reported that about one half of the communi-

cation tasks they perform involve the simple passing of information from one party to

another. If this task could be automated using software which filters the chat stream

and passes information between the correct parties, the effective number of nodes

would be reduced. A third way to reduce the number of communication nodes is to

reduce or combine organizations in the external system. The method by which this

could occur is well beyond the scope of this research, but the effect on the operator

would be a reduction in the number of organizations with which they would have to

communicate, presuming that the newly combined organizations would communicate
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more effectively within themselves.

In this system, the navigation task represents what would be secondary tasks in

other systems. Offloading secondary tasks during periods of high mental demand can

be accomplished with automation, which is already being instituted in the military

example modelled for this research. A software tool called “Internet Relay Chat Co-

ordinate Extractor (ICE)” is being implemented in a few operational units, according

to SMEs. The automation could be tied to the cognitive arousal of the operator,

however and switched off during periods of low demand to allay boredom. Secondary

tasks could also be offloaded to a contingency operator, as manpower availability

dictates.

3.6.2 Future Work.

Future work should define the turn-taking system of conversation in the military

environment. A well defined turn-taking system would give a more pedigreed founda-

tion upon which future communications models could be built. Investigations should

also be conducted on the effects of changing the external system on the operator at

an enterprise level.
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IV. Conclusion

4.1 Discussion

Implications for future systems. In the early stages of development, sys-

tem architects have the powerful opportunity to determine how a new system will

integrate with existing systems to accomplish a desired capability. If communication

and team structure is not considered in this integration process, new systems which

require real time distributed team communications will undoubtedly place higher de-

mands on operators as missions become more complex and rely more on collaboration

for their success. From a system of systems standpoint, these considerations were not

made for the MQ-1/9, leading to immense variance in task loading during missions.

Interviews showed that operators may swing from being bored to overwhelmed in

a matter of minutes. Future system designs need to incorporate an understanding

of the effective network size from the perspective of each operator in the system to

optimize information flows. This research shows how this understanding can be in-

corporated into the design through modality allocation and team structure, which

can each be dictated in early stages of development when design changes are the least

costly. Multiple team structures should be considered and potentially simulated for

various tasks in early development. Team structure could be designed to vary during

the mission to accommodate dynamic shifts in workload.

Implications for future analyses. Previous works involving IMPRINT

have not, to the author’s knowledge, included a robust statistical analysis of workload

data to compare multiple system configurations. This research uses vetted simulation

study methods such as those outlined in Banks et al. (2010); Mitchell and Samms

(2007) and Law (2006) to design experiments and determine the appropriate number
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of replications needed to account for random variance. Multiple replications made

possible the application of powerful statistical methods to determine quantifiable

results in lieu of heuristic recommendations which are more widely used in workload

prediction.

4.2 Future Work

MacMillan et al. (2004) were able to combine theoretical framework with empir-

ical research to make conclusive recommendations about team structure. This work

certainly contributes to a solid theoretical underpinning; future studies should in-

corporate human subjects experimentation and empirical study to test the results of

this work. Multi-modal communication systems such as the one developed by the

Air Force Research Lab (Finomore et al., 2009) could be used in conjunction with

well developed RPA mission simulators to experimentally test the effectiveness of dy-

namic allocation of communication modalities to alleviate communication workload.

Discrete event simulation is a good fit for modeling communication at the level pre-

sented in this research, though future analysts may consider agent based models to

allow more granular and semantically oriented simulation. The results of the agent

based model could then be worked onto the workload predictive capabilities of IM-

PRINT to make accurate inferences about communication priorities and semantic

content. Should the opportunity arise, future researchers in this field should develop

a large corpus of RPA operator communications. Having a corpus of both verbal and

chat communications from an actual mission would help researchers understand the

exact nature of communications in this arena in ways that interviews cannot. This

corpus could be analyzed with latent semantic analyses (Dumais, 2004) to obtain

measures such as the anticipation ratio and situation awareness measures discussed

in MacMillan et al. (2004) to assess the effectiveness of team communication in real
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missions. Analyzing communication data from real missions could be extremely diffi-

cult, so the author suggests attempts to study a representative RPA related exercise

or war game to gather data. As it would be both unsafe and contemptible to perform

experiments during real missions, simulators could be used to further validate team

structure and system node changes and their effects on workload.

Remotely piloted systems have more communication channel options than systems

where the pilot is in the aircraft, and this research implies that more diverse communi-

cation is not necessarily ideal in all conditions. Many operators prefer mIRC because

of its effectiveness and persistence, but it is not a particularly rich media Robert and

Dennis (2005). More connectedness between organizations certainly enable coordi-

nations, but also increases communication overhead. Research to compare manned

and unmanned systems and their respective team structures and communications

architectures would be valuable.

IMPRINT allows the analyst the ability to set a workload threshold and simulate

how an operator might manage the tasks to keep from being overwhelmed. This

feature is particularly useful for determining which tasks are being delayed or dropped

at certain times in the mission, and can be used to measure the number of delays for

tasks of interest. This research shows that IMPRINT to create and measure multiple

simultaneous metrics to show how changing the system affects different aspects of

the operator’s experience. The results show that workload, monitoring time and

the number of delayed tasks are affected, but they do not provide a useful basis of

comparison. Workload can be reduced by changing the number of communication

nodes, but how much can it be reduced before boredom or change blindness begin to

occur? Further work must be done to develop a theoretical optimum between task

saturation, or ’red-line’ (Grier et al., 2008) and boredom, or the ’blue-line’ (De Waard,

1996).
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Appendix A. MIC Questionnaire

General Questions

1. What are your major goals and functions as a MIC?

2. How long is a typical mission?

3. What are the major segments of your day?

4. Which channels do MICs use to communicate with parties within the GCS?

How do they decide which channels to use at what times?

5. What is the process used to deal with large volumes of chat communication

events? Are there scan patterns? What are the things you specifically look for?

6. How much chat information simply needs to be passed to another operator?

How much is addressed particularly to the MIC? How much of it requires critical

thinking, extra look-up tasks or problem solving?

7. Which parties have the highest priority during each mission segment?

Model Parameter Specifics

1. What are the major chat rooms for each segment of the mission?

2. How many parties are in each of the rooms?

3. In which rooms do you spend the most time reading and typing?

4. Which mission segments are the most heavy on chat? Are you able to read

everything during that phase, or are you skimming/scanning the windows?

5. How long does it take to scan the chat windows unencumbered (in seconds)?
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6. During each mission phase, how often (in seconds) do chat events come in from

each of the major rooms?

7. If scanning, how often do you stop and read for comprehension?

8. On voice channels, how often do interruptions occur with each? To what are

the interruptions attributed? How are the interruptions dealt with?

9. How often do chat windows fill up and result in excess scrolling for previous

information? Is information sometimes missed completely?

10. When will you take information given on one channel and pass it through a

different channel to another party? How often does this occur during a typical

mission?

11. As a percentage of total chat, how much causes you to type?

12. As a percentage of total chat, how much causes you to speak on the radio?

13. As a percentage of total chat, how much causes you to speak on the intercom?
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