2,430 research outputs found
Pb-Zn liquid metal diffusion
The Lead-Zinc binary equilibrium system is currently being investigated. Ground based studies of this system were performed to examine the possibility of obtaining a couple which, after diffusion, could be examined continuously along the diffusion axis by quantitative metallography to determine the extent of diffusion. The specimens were analyzed by X-ray fluorescence in the scanning electron microscope to provide exact information on the chemical composition gradient. Two diffusion experiments were run simultaneously in the multipurpose furnace, each in its own isothermal cavity. Two flight samples, two flight backup samples, and two flight space samples were generated
Thermal and convection analyses of the dendrite remelting rocket experiment; Experiment 74-21 in the space processing rocket program
The Dendrite Remelting Rocket Experiment was performed aboard a Black Brant VC Sounding Rocket during a period which gravity levels of approximately 0.00001 g prevailed. The experiment consisted of cooling an aqueous ammonium chloride solution in a manner such that crystallization of ammonium chloride crystals proceeded throughout a three minute period of zero-g. The crystallization process during flight was recorded on 35 mm panatomic-x film. A number of ground crystallizations were similarly recorded for comparison purposes. The convective and thermal conditions in aqueous and metallic liquid systems were assessed under conditions of the flight experiment to help establish the relevance of the rocket experiment to metals casting phenomena. The results indicate that aqueous or metallic convective velocities in the Dendrite Remelting Rocket Experiment cell are of insignificant magnitudes at the 0.0001 to 0.00001 g levels of the experiment. The crystallization phenomena observed in the Rocket Experiment, therefore, may be indicative of how metals will solidify in low-g
The Sommerfeld half-plane problem revisited, IV: Variations on a theme of Carlson and Heins
A plane wave is incident upon an infinite set of equally spaced, semi-infinite parallel and staggered plates. The boundary conditions on the plates alternate between the Dirichlet and Neumann ones. This problem is formulated as a pair of coupled Wiener-Hopf integral equations and solved by a method proposed by A. E. Heins in 1950. For the case of specular reflection, that is, a single reflected plane wave, the magnitudes of the reflection coefficient and the transmission coefficients are determined.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50172/1/1670100307_ftp.pd
Composition and concentration anomalies for structure and dynamics of Gaussian-core mixtures
We report molecular dynamics simulation results for two-component fluid
mixtures of Gaussian-core particles, focusing on how tracer diffusivities and
static pair correlations depend on temperature, particle concentration, and
composition. At low particle concentrations, these systems behave like simple
atomic mixtures. However, for intermediate concentrations, the single-particle
dynamics of the two species largely decouple, giving rise to the following
anomalous trends. Increasing either the concentration of the fluid (at fixed
composition) or the mole fraction of the larger particles (at fixed particle
concentration) enhances the tracer diffusivity of the larger particles, but
decreases that of the smaller particles. In fact, at sufficiently high particle
concentrations, the larger particles exhibit higher mobility than the smaller
particles. Each of these dynamic behaviors is accompanied by a corresponding
structural trend that characterizes how either concentration or composition
affects the strength of the static pair correlations. Specifically, the dynamic
trends observed here are consistent with a single empirical scaling law that
relates an appropriately normalized tracer diffusivity to its pair-correlation
contribution to the excess entropy.Comment: 5 pages, 4 figure
Generalizing Rosenfeld's excess-entropy scaling to predict long-time diffusivity in dense fluids of Brownian particles: From hard to ultrasoft interactions
Computer simulations are used to test whether a recently introduced
generalization of Rosenfeld's excess-entropy scaling method for estimating
transport coefficients in systems obeying molecular dynamics can be extended to
predict long-time diffusivities in fluids of particles undergoing Brownian
dynamics in the absence of interparticle hydrodynamic forces. Model fluids with
inverse-power-law, Gaussian-core, and Hertzian pair interactions are
considered. Within the generalized Rosenfeld scaling method, long-time
diffusivities of ultrasoft Gaussian-core and Hertzian particle fluids, which
display anomalous trends with increasing density, are predicted (to within 20%)
based on knowledge of interparticle interactions, excess entropy, and scaling
behavior of simpler inverse-power-law fluids
Coriolis force in Geophysics: an elementary introduction and examples
We show how Geophysics may illustrate and thus improve classical Mechanics
lectures concerning the study of Coriolis force effects. We are then interested
in atmospheric as well as oceanic phenomena we are familiar with, and are for
that reason of pedagogical and practical interest. Our aim is to model them in
a very simple way to bring out the physical phenomena that are involved.Comment: Accepted for publication in European Journal of Physic
Generalized Rosenfeld scalings for tracer diffusivities in not-so-simple fluids: Mixtures and soft particles
Rosenfeld [Phys. Rev. A 15, 2545 (1977)] noticed that casting transport
coefficients of simple monatomic, equilibrium fluids in specific dimensionless
forms makes them approximately single-valued functions of excess entropy. This
has predictive value because, while the transport coefficients of dense fluids
are difficult to estimate from first principles, excess entropy can often be
accurately predicted from liquid-state theory. Here, we use molecular
simulations to investigate whether Rosenfeld's observation is a special case of
a more general scaling law relating mobility of particles in mixtures to excess
entropy. Specifically, we study tracer diffusivities, static structure, and
thermodynamic properties of a variety of one- and two-component model fluid
systems with either additive or non-additive interactions of the hard-sphere or
Gaussian-core form. The results of the simulations demonstrate that the effects
of mixture concentration and composition, particle-size asymmetry and
additivity, and strength of the interparticle interactions in these fluids are
consistent with an empirical scaling law relating the excess entropy to a new
dimensionless (generalized Rosenfeld) form of tracer diffusivity, which we
introduce here. The dimensionless form of the tracer diffusivity follows from
knowledge of the intermolecular potential and the transport / thermodynamic
behavior of fluids in the dilute limit. The generalized Rosenfeld scaling
requires less information, and provides more accurate predictions, than either
Enskog theory or scalings based on the pair-correlation contribution to the
excess entropy. As we show, however, it also suffers from some limitations,
especially for systems that exhibit significant decoupling of individual
component tracer diffusivities.Comment: 15 pages, 10 figure
- …