18 research outputs found

    Hull-less barley varieties: Storage proteins and amino acid distribution in relation to nutritional quality

    No full text
    Barley (Hordeum vuldare L.) has had an important impact on human nutrition. Hull-less barley is a genetically improved type that has been widely used in recent years. Six Brazilian hull-less barley varieties (IAC-IBON 214-82: IAC 8612-421: IAC 8501-31; IAC 8501-12; IAPAR 39-ACUMAI; IAC 8501-22) were analyzed for storage protein constituents, amino acid contents, and similarity among the hull-less barley varieties. Albumins, globulins, prolamins I and II, and glutelins were extracted and separated by SDS-PAGE. The total Protein amino acid contents of the flour were also determined for each variety by TLC and HPLC. Variations in intensity and appearance and disappearance of protein bands were observed among the varieties suggesting genetic variability. However, the amino acid profile did not indicate any major variations in the amino acid concentrations. The high lysine and threonine total concentrations detected in the seeds of the hull-less barley varieties encouraged an investigation into the regulation of amino acid metabolism and storage protein synthesis.18332734

    Using Xbox kinect motion capture technology to improve clinical rehabilitation outcomes for balance and cardiovascular health in an individual with chronic TBI

    Get PDF
    Abstract Background Motion capture virtual reality-based rehabilitation has become more common. However, therapists face challenges to the implementation of virtual reality (VR) in clinical settings. Use of motion capture technology such as the Xbox Kinect may provide a useful rehabilitation tool for the treatment of postural instability and cardiovascular deconditioning in individuals with chronic severe traumatic brain injury (TBI). The primary purpose of this study was to evaluate the effects of a Kinect-based VR intervention using commercially available motion capture games on balance outcomes for an individual with chronic TBI. The secondary purpose was to assess the feasibility of this intervention for eliciting cardiovascular adaptations. Methods A single system experimental design (n = 1) was utilized, which included baseline, intervention, and retention phases. Repeated measures were used to evaluate the effects of an 8-week supervised exercise intervention using two Xbox One Kinect games. Balance was characterized using the dynamic gait index (DGI), functional reach test (FRT), and Limits of Stability (LOS) test on the NeuroCom Balance Master. The LOS assesses end-point excursion (EPE), maximal excursion (MXE), and directional control (DCL) during weight-shifting tasks. Cardiovascular and activity measures were characterized by heart rate at the end of exercise (HRe), total gameplay time (TAT), and time spent in a therapeutic heart rate (TTR) during the Kinect intervention. Chi-square and ANOVA testing were used to analyze the data. Results Dynamic balance, characterized by the DGI, increased during the intervention phase χ 2 (1, N = 12) = 12, p = .001. Static balance, characterized by the FRT showed no significant changes. The EPE increased during the intervention phase in the backward direction χ 2 (1, N = 12) = 5.6, p = .02, and notable improvements of DCL were demonstrated in all directions. HRe (F (2,174) = 29.65, p = < .001) and time in a TTR (F (2, 12) = 4.19, p = .04) decreased over the course of the intervention phase. Conclusions Use of a supervised Kinect-based program that incorporated commercial games improved dynamic balance for an individual post severe TBI. Additionally, moderate cardiovascular activity was achieved through motion capture gaming. Further studies appear warranted to determine the potential therapeutic utility of commercial VR games in this patient population. Trial registration Clinicaltrial.gov ID - NCT0288928

    Áreas de secção transversa do braço: implicações técnicas e aplicações para avaliação da composição corporal e da força dinâmica máxima Area de sección transversa del brazo: implicaciones técnicas y aplicaciones para avaliación de la composición corporal y de la fuerza dinámica máxima Arm cross-section areas: technical implications and applications for body composition and maximal dynamic strength evaluation

    No full text
    As áreas do tecido muscular (A MB) e do anel de gordura do braço (A GB), podem ser estimadas por medidas antropométricas. OBJETIVO: Investigar a validade e o erro intertestador da antropometria para inferência A MB e do A GB. Secundariamente, estudou-se a previsão da força dos membros superiores e tronco através da A MB. MÉTODOS: Foram voluntários para este estudo 40 adultos masculinos jovens (25 ± 6 anos; 72,6 ± 9,4kg), divididos aleatoriamente nos grupos de validade interna (VI, n = 30) e validade externa (VE, n = 10). Determinou-se para VI, através de conceitos geométricos, a área total do braço (A TB), A MB, A GB e área percentual de gordura do braço. O somatório de oito dobras cutâneas (S DC8) foi empregado como índice da adiposidade corporal. A força dos membros superiores e do tronco foi medida através da carga máxima alcançada no exercício supino reto livre (1-RM). As medidas antropométricas foram realizadas por dois avaliadores independentes. Os dados foram tratados por meio da análise de regressão, coeficiente de correlação intraclasse (ICC) e teste t de Student pareado (a < 0,05). RESULTADOS: A variância do S DC8 pode ser explicada em 93% (EPE = 14,6mm) a partir da A GB e do peso corporal. A A MB explicou em 66,1% (EPE = 9kg) a 1-RM. Não se observou diferença significativa, para o grupo VE, entre os valores medidos (84,2 ± 16,2kg) e preditos (78,4 ± 14,2kg) de 1-RM. Observou-se pouca variação entre os avaliadores para A MB (ICC = 0,99), A GB (ICC = 0,96) e A TB (ICC = 0,99). CONCLUSÃO: A antropometria pode ser empregada para inferência da A MB e do A GB, com boa concordância entre avaliadores, para estimativa da adiposidade corporal e da força dos membros superiores e tronco.<br>Las áreas del tejido muscular (A MB) y del de grosor del brazo (A GB), pueden ser estimadas por medidas antropométricas. OBJETIVO: Investigar la validación de el error inter-testeo de la antropometría para inferencia del A MB y del A GB. Secundariamente, se estudió la previsión de la fuerza de los miembros superiores y del tronco a través de la A MB. METODOS: Fueron voluntarios para este estudio 40 jóvenes masculinos (25 ± 6 años; 72,6 ± 9,4 kg), divididos aleatoriamente en los grupos de validación interna (VI, n = 30) y de validación externa (VE, n = 10). Se determinó para VI, a través de conceptos geométricos, el área total del brazo (A TB), A MB, A GB y el área porcentual de gordura de el brazo. La sumatoria de ocho pliegues cutáneos (S DC8) fue empleado como índice de la adiposidad corporal. La fuerza de los miembros superiores y del e tronco fue medida a través de la carga máxima alcanzada del ejercicio supino recto libre (1-RM). Las medidas antropométricas fueron realizadas por dos evaluadores independientes. Los datos fueron tratados por medio del análisis de regresión, con coeficiente de correlación intraclase (ICC) y el test t de Student apareado (a < 0,05). RESULTADOS: La varianza de S DC8 puede ser explicada en un 93% (EPE = 14,6 mm) a partir de A GB y del peso corporal. La A MB se explico en 66,1% (EPE = 9 kg) a 1-RM. No se observó diferencia significativa, para el grupo VE, entre los valores medidos (84,2 ± 16,2 kg) y predecidos (78,4 ± 14,2 kg) de 1-RM. Se observó poca variación entre los evaluadores para A MB (ICC = 0,99), A GB (ICC = 0,96) y A TB (ICC = 0,99). CONCLUSION: La antropometría puede ser empleada para la inferencia de la A MB y del A GB, con buena concordancia entre evaluadores, para estimar la adiposidad coporal y la fuerza de los miembros superiores del tronco.<br>Arm muscular tissue and fat ring areas can be evaluated by anthropometric measures. The objective of this study was to investigate the application of one technique that infers these areas to estimate body adiposity and the maximal strength of upper limbs and trunk, as well as its objectivity. For that, a sample of 40 healthy men (25 ± 6 years; 72.6 ± 9.4 kg) was divided in two groups: VI (n = 30) internal validation and VE (n = 10) external validation. It was determined to VI the muscle area (A MB), fat absolute area (A GB) and fat percentile upper-arm area (A PB) using the values of circumference and triceps skinfold, as well as the sum of seven and eight skinfold thickness (S8DC) and the maximal weight lifted in bench press (1-RM) by two evaluators separately (A and B). In VE only A MB and 1-RM were obtained. Multiple and simple regression analyses and Student t-test were applied (a < 0.05). The variance of S8DC was explained in 93% (EPE = 14.6 mm) from A GB and weight, the A MB explained in 66% (EPE = 9 kg) of the 1-RM variance by itself and there was no significant difference between the maximal weight measured and predicted in VE group. Satisfactory intraclass correlations between the evaluators to A MB (ICC = 0.99), A GB (ICC = 0.96) and A TB (ICC = 0.99) were also found. Therefore it may be concluded that the anthropometric technique that infers muscle and fat upper-arm areas can be used with good agreement between evaluators to estimate body adiposity and upper limbs and trunk strength
    corecore