243 research outputs found

    Two Notch Ligands, Dll1 and Jag1, Are Differently Restricted in Their Range of Action to Control Neurogenesis in the Mammalian Spinal Cord

    Get PDF
    Notch signalling regulates neuronal differentiation in the vertebrate nervous system. In addition to a widespread function in maintaining neural progenitors, Notch signalling has also been involved in specific neuronal fate decisions. These functions are likely mediated by distinct Notch ligands, which show restricted expression patterns in the developing nervous system. Two ligands, in particular, are expressed in non-overlapping complementary domains of the embryonic spinal cord, with Jag1 being restricted to the V1 and dI6 progenitor domains, while Dll1 is expressed in the remaining domains. However, the specific contribution of different ligands to regulate neurogenesis in vertebrate embryos is still poorly understood.In this work, we investigated the role of Jag1 and Dll1 during spinal cord neurogenesis, using conditional knockout mice where the two genes are deleted in the neuroepithelium, singly or in combination. Our analysis showed that Jag1 deletion leads to a modest increase in V1 interneurons, while dI6 neurogenesis was unaltered. This mild Jag1 phenotype contrasts with the strong neurogenic phenotype detected in Dll1 mutants and led us to hypothesize that neighbouring Dll1-expressing cells signal to V1 and dI6 progenitors and restore neurogenesis in the absence of Jag1. Analysis of double Dll1;Jag1 mutant embryos revealed a stronger increase in V1-derived interneurons and overproduction of dI6 interneurons. In the presence of a functional Dll1 allele, V1 neurogenesis is restored to the levels detected in single Jag1 mutants, while dI6 neurogenesis returns to normal, thereby confirming that Dll1-mediated signalling compensates for Jag1 deletion in V1 and dI6 domains.Our results reveal that Dll1 and Jag1 are functionally equivalent in controlling the rate of neurogenesis within their expression domains. However, Jag1 can only activate Notch signalling within the V1 and dI6 domains, whereas Dll1 can signal to neural progenitors both inside and outside its domains of expression

    Measurement and interpretation of same-sign W boson pair production in association with two jets in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents the measurement of fducial and diferential cross sections for both the inclusive and electroweak production of a same-sign W-boson pair in association with two jets (W±W±jj) using 139 fb−1 of proton-proton collision data recorded at a centre-of-mass energy of √s = 13 TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity diference. The measured fducial cross sections for electroweak and inclusive W±W±jj production are 2.92 ± 0.22 (stat.) ± 0.19 (syst.)fb and 3.38±0.22 (stat.)±0.19 (syst.)fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confdence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons H±± that are produced in vector-boson fusion processes and decay into a same-sign W boson pair is performed. The largest deviation from the Standard Model occurs for an H±± mass near 450 GeV, with a global signifcance of 2.5 standard deviations

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (τν and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Marginal zone B cells control the response of follicular helper T cells to a high-cholesterol diet

    Get PDF
    Splenic marginal zone B (MZB) cells, positioned at the interface between circulating blood and lymphoid tissue, detect and respond to blood-borne antigens. Here we show that MZB cells in mice activate a homeostatic program in response to a high-cholesterol diet (HCD) and regulate both the differentiation and accumulation of T follicular helper (TFH) cells. Feeding mice an HCD resulted in upregulated MZB cell surface expression of the immunoregulatory ligand PDL1 in an ATF3-dependent manner and increased the interaction between MZB cells and pre-TFH cells, leading to PDL1-mediated suppression of TFH cell motility, alteration of TFH cell differentiation, reduced TFH abundance and suppression of the proatherogenic TFH response. Our findings reveal a previously unsuspected role for MZB cells in controlling the TFH–germinal center response to a cholesterol-rich diet and uncover a PDL1-dependent mechanism through which MZB cells use their innate immune properties to limit an exaggerated adaptive immune response.This work was supported by BHF grant no. PG/15/76/31756, BHF grant no. PG/13/73/30466, ERC grant no. 2891164 and EC FP7 VIA grant no. HEALTH-F4- 2013-603131 to Z.M. and by SAF2013-45543-R from the Spanish Ministry of Economy and Competitiveness (MINECO) to J.L.d.l.P. M.N. was first supported by a Sara Borrell grant (CD09/00452) from the Instituto Nacional de Salud Carlos III (Spain) and then by a 2-year BHF Project Grant. M.N. has also received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 608765. The Wellcome Trust supported the Cambridge Mouse Biochemistry Laboratory

    Search for dark photons in rare Z boson decays with the ATLAS detector

    Get PDF
    A search for events with a dark photon produced in association with a dark Higgs boson via rare decays of the standard model Z boson is presented, using 139     fb − 1 of √ s = 13     TeV proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider. The dark boson decays into a pair of dark photons, and at least two of the three dark photons must each decay into a pair of electrons or muons, resulting in at least two same-flavor opposite-charge lepton pairs in the final state. The data are found to be consistent with the background prediction, and upper limits are set on the dark photon’s coupling to the dark Higgs boson times the kinetic mixing between the standard model photon and the dark photon, α D ϵ 2 , in the dark photon mass range of [5, 40] GeV except for the Υ mass window [8.8, 11.1] GeV. This search explores new parameter space not previously excluded by other experiments

    Combined measurement of the Higgs boson mass from the H → γγ and H → ZZ∗ → 4ℓ decay channels with the ATLAS detector using √s = 7, 8, and 13 TeV pp collision data

    Get PDF
    A measurement of the mass of the Higgs boson combining the H → Z Z ∗ → 4 ℓ and H → γ γ decay channels is presented. The result is based on 140     fb − 1 of proton-proton collision data collected by the ATLAS detector during LHC run 2 at a center-of-mass energy of 13 TeV combined with the run 1 ATLAS mass measurement, performed at center-of-mass energies of 7 and 8 TeV, yielding a Higgs boson mass of 125.11 ± 0.09 ( stat ) ± 0.06 ( syst ) = 125.11 ± 0.11     GeV . This corresponds to a 0.09% precision achieved on this fundamental parameter of the Standard Model of particle physics

    Disease: A Hitherto Unexplored Constraint on the Spread of Dogs (Canis lupus familiaris) in Pre-Columbian South America

    Full text link

    Of mice and men: molecular genetics of congenital heart disease

    Get PDF
    corecore