20 research outputs found

    Prescission neutron multiplicity and fission probability from Langevin dynamics of nuclear fission

    Get PDF
    A theoretical model of one-body nuclear friction which was developed earlier, namely the chaos-weighted wall formula, is applied to a dynamical description of compound nuclear decay in the framework of the Langevin equation coupled with statistical evaporation of light particles and photons. We have used both the usual wall formula friction and its chaos-weighted version in the Langevin equation to calculate the fission probability and prescission neutron multiplicity for the compound nuclei 178^{178}W, 188^{188}Pt, 200^{200}Pb, 213^{213}Fr, 224^{224}Th, and 251^{251}Es. We have also obtained the contributions of the presaddle and postsaddle neutrons to the total prescission multiplicity. A detailed analysis of our results leads us to conclude that the chaos-weighted wall formula friction can adequately describe the fission dynamics in the presaddle region. This friction, however, turns out to be too weak to describe the postsaddle dynamics properly. This points to the need for a suitable explanation for the enhanced neutron emission in the postsaddle stage of nuclear fission.Comment: RevTex, 14 pages including 5 Postscript figures, results improved by using a different potential, conclusions remain unchanged, to appear in Phys. Rev.

    Biodiversity of the Collembola Fauna of Wetland Kerkini (N. Greece), with description of the sexual dimorphism of Entomobrya atrocincta Schött 1896 (Collembola: Entomobryomorpha)

    Get PDF
    A report on the results of a research into some aspects of the collembolan fauna of the Greek Nature Reserve associated with Lake Kerkini, known as Wetland Kerkini, is presented. The nature reserve is large and includes a wide variety of habitats, many of which were not included in this preliminary survey. From the areas sampled we recorded 44 species, of which 39 were previously described, two (Folsomia potapovi Jordana & Baquero n. sp., Entomobrya naziridisi Jordana & Baquero n. sp.), are new to science, while three are identifi ed to generic level; a further 21 are new records for Greece, and an additional 11 species are new records to the Greek Mainland. Sampling with Berlese- Tullgren funnels and Malaise traps allowed us to capture species typical of soil and species present over vegetation. This summary is based on the records held in the online database of the Fauna Europaea Project

    Lipid traffic: the ABC of transbilayer movement

    No full text
    Membrane lipids do not spontaneously exchange between the two leaflets of lipid bilayers because the polar headgroups cannot cross the hydrophobic membrane interior. Cellular membranes, notably eukaryotic plasma membranes, are equipped with special proteins that actively translocate lipids from one leaflet to the other. In addition, cellular membranes contain proteins that facilitate a passive equilibration of lipids between the two membrane halves. In recent years, a growing number of proteins have been put forward as lipid translocators or facilitators. Unexpectedly, some of these appear to be required for efficient translocation of lipids lacking bulky headgroups, like cholesterol and fatty acids. The candidate lipid translocators identified so far belong to large protein families whose other members include pumps for amphiphilic molecules like bile salts and drugs

    The organizing potential of sphingolipids in intracellular membrane transport

    No full text
    Eukaryotes are characterized by endomembranes that are connected by vesicular transport along secretory and endocytic pathways. The compositional differences between the various cellular membranes are maintained by sorting events, and it has long been believed that sorting is based solely on protein-protein interactions. However, the central sorting station along the secretory pathway is the Golgi apparatus, and this is the site of synthesis of the sphingolipids. Sphingolipids are essential for eukaryotic life, and this review ascribes the sorting power of the Golgi to its capability to act as a distillation apparatus for sphingolipids and cholesterol. As Golgi cisternae mature, ongoing sphingolipid synthesis attracts endoplasmic reticulum-derived cholesterol and drives a fluid-fluid lipid phase separation that segregates sphingolipids and sterols from unsaturated glycerolipids into lateral domains. While sphingolipid domains move forward, unsaturated glycerolipids are retrieved by recycling vesicles budding from the sphingolipid-poor environment. We hypothesize that by this mechanism, the composition of the sphingolipid domains, and the surrounding membrane changes along the cis-trans axis. At the same time the membrane thickens. These features are recognized by a number of membrane proteins that as a consequence of partitioning between domain and environment follow the domains but can enter recycling vesicles at any stage of the pathway. The interplay between protein- and lipid-mediated sorting is discusse

    Lipid traffic: the ABC of transbilayer movement

    No full text
    Membrane lipids do not spontaneously exchange between the two leaflets of lipid bilayers because the polar headgroups cannot cross the hydrophobic membrane interior. Cellular membranes, notably eukaryotic plasma membranes, are equipped with special proteins that actively translocate lipids from one leaflet to the other. In addition, cellular membranes contain proteins that facilitate a passive equilibration of lipids between the two membrane halves. In recent years, a growing number of proteins have been put forward as lipid translocators or facilitators. Unexpectedly, some of these appear to be required for efficient translocation of lipids lacking bulky headgroups, like cholesterol and fatty acids. The candidate lipid translocators identified so far belong to large protein families whose other members include pumps for amphiphilic molecules like bile salts and drugs
    corecore