2 research outputs found
European traditional tomatoes galore: a result of farmers' selection of a few diversity-rich loci
[EN] The high phenotypic diversity observed among European traditional tomato varieties was created by traditional farmer-driven selection by inadvertently combining a very few polymorphic loci subjected to balancing selection.
A comprehensive collection of 1254 tomato accessions, corresponding to European traditional and modern varieties, early domesticated varieties, and wild relatives, was analyzed by genotyping by sequencing. A continuous genetic gradient between the traditional and modern varieties was observed. European traditional tomatoes displayed very low genetic diversity, with only 298 polymorphic loci (95% threshold) out of 64 943 total variants. European traditional tomatoes could be classified into several genetic groups. Two main clusters consisting of Spanish and Italian accessions showed higher genetic diversity than the remaining varieties, suggesting that these regions might be independent secondary centers of diversity with a different history. Other varieties seem to be the result of a more recent complex pattern of migrations and hybridizations among the European regions. Several polymorphic loci were associated in a genome-wide association study with fruit morphological traits in the European traditional collection. The corresponding alleles were found to contribute to the distinctive phenotypic characteristic of the genetic varietal groups. The few highly polymorphic loci associated with morphological traits in an otherwise a low-diversity population suggests a history of balancing selection, in which tomato farmers likely maintained the morphological variation by inadvertently applying a high selective pressure within different varietal types.This work was supported by the European Commission H2020 research and innovation program through TRADITOM grant agreement no. 634561, G2P-SOL, grant agreement no. 677379, and HARNESSTOM grant agreement no. 101000716. MP is grateful to the Spanish Ministerio de Ciencia e Innovacion for a postdoctoral grant (IJC2019-039091-I/AEI/10.13039/501100011033).Blanca Postigo, JM.; Pons Puig, C.; Montero-Pau, J.; Sánchez-Matarredona, D.; Ziarsolo, P.; Fontanet, L.; Fisher, J.... (2022). European traditional tomatoes galore: a result of farmers' selection of a few diversity-rich loci. Journal of Experimental Botany. 73(11):3431-3445. https://doi.org/10.1093/jxb/erac07234313445731
European traditional tomatoes galore: a result of farmers’ selection of a few diversity-rich loci
A comprehensive collection of 1254 tomato accessions, corresponding to European traditional and modern varieties, early domesticated varieties, and wild relatives, was analyzed by genotyping by sequencing. A continuous genetic gradient between the traditional and modern varieties was observed. European traditional tomatoes displayed very low genetic diversity, with only 298 polymorphic loci (95% threshold) out of 64 943 total variants. European traditional tomatoes could be classified into several genetic groups. Two main clusters consisting of Spanish and Italian accessions showed higher genetic diversity than the remaining varieties, suggesting that these regions might be independent secondary centers of diversity with a different history. Other varieties seem to be the result of a more recent complex pattern of migrations and hybridizations among the European regions. Several polymorphic loci were associated in a genome-wide association study with fruit morphological traits in the European traditional collection. The corresponding alleles were found to contribute to the distinctive phenotypic characteristic of the genetic varietal groups. The few highly polymorphic loci associated with morphological traits in an otherwise a low-diversity population suggests a history of balancing selection, in which tomato farmers likely maintained the morphological variation by inadvertently applying a high selective pressure within different varietal types.This work was supported by the European Commission H2020 research and innovation program through TRADITOM grant agreement no. 634561, G2P-SOL, grant agreement no. 677379, and HARNESSTOM grant agreement no. 101000716. MP is grateful to the Spanish Ministerio de Ciencia e Innovación for a postdoctoral grant (IJC2019-039091-I/AEI/10.13039/501100011033).Postprint (published version