33 research outputs found

    Potential antidepressant effects of scutellaria baicalensis, hericium erinaceus and rhodiola rosea

    Get PDF
    Recent studies focused on the pharmacology and feasibility of herbal compounds as a potential strategy to target a variety of human diseases ranging from metabolic to brain disorders. Accordingly, bioactive ingredients which are found within a variety of herbal compounds are reported to produce both neuroprotective and psychotropic activities which may help to combat mental disorders such as depression, anxiety, sleep disturbances and cognitive alterations. In the present manuscript, we focus on three herbs which appear effective in mitigating anxiety or depression with favourable risk-benefit profiles, namely Scutellaria baicalensis (S. baicalensis), Hericium erinaceus (H. erinaceus) and Rhodiola rosea (R. rosea). These three traditional folk medicinal herbs target the main biochemical events that are implicated in mental disorders, mimicking, to some extent, the mechanisms of action of conventional antidepressants and mood stabilizers with a wide margin of tolerability. In detail, they rescue alterations in neurotransmitter and neuro-endocrine systems, stimulate neurogenesis and the synthesis of neurotrophic factors, and they counteract oxidative stress, mitochondrial dysfunction and inflammation. Albeit the encouraging results that emerge from both experimental and clinical evidence, further studies are needed to confirm and better understand the mental-health promoting, and specifically, the antidepressant effects of these herbs

    Merging the multi‐target effects of phytochemicals in neurodegeneration: From oxidative stress to protein aggregation and inflammation

    Get PDF
    Wide experimental evidence has been provided in the last decade concerning the neuroprotective effects of phytochemicals in a variety of neurodegenerative disorders. Generally, the neuroprotective effects of bioactive compounds belonging to different phytochemical classes are attributed to antioxidant, anti‐aggregation, and anti‐inflammatory activity along with the restoration of mitochondrial homeostasis and targeting alterations of cell‐clearing systems. Far from being independent, these multi‐target effects represent interconnected events that are commonly implicated in the pathogenesis of most neurodegenerative diseases, independently of etiology, nosography, and the specific misfolded proteins being involved. Nonetheless, the increasing amount of data applying to a variety of neurodegenerative disorders joined with the multiple effects exerted by the wide variety of plant‐derived neuroprotective agents may rather confound the reader. The present review is an attempt to provide a general guideline about the most relevant mechanisms through which naturally occurring agents may counteract neurodegeneration. With such an aim, we focus on some popular phytochemical classes and bioactive compounds as representative examples to design a sort of main highway aimed at deciphering the most relevant protective mechanisms which make phytochemicals potentially useful in counteracting neurodegeneration. In this frame, we emphasize the potential role of the cell‐clearing machinery as a kernel in the antioxidant, anti‐aggregation, anti‐inflammatory, and mitochondrial protecting effects of phytochemicals

    A re-appraisal of pathogenic mechanisms bridging wet and dry age-related macular degeneration leads to reconsider a role for phytochemicals

    Get PDF
    Which pathogenic mechanisms underlie age-related macular degeneration (AMD)? Are they different for dry and wet variants, or do they stem from common metabolic alterations? Where shall we look for altered metabolism? Is it the inner choroid, or is it rather the choroid–retinal border? Again, since cell-clearing pathways are crucial to degrade altered proteins, which metabolic system is likely to be the most implicated, and in which cell type? Here we describe the unique clearing activity of the retinal pigment epithelium (RPE) and the relevant role of its autophagy machinery in removing altered debris, thus centering the RPE in the pathogenesis of AMD. The cell-clearing systems within the RPE may act as a kernel to regulate the redox homeostasis and the traffic of multiple proteins and organelles toward either the choroid border or the outer segments of photoreceptors. This is expected to cope with the polarity of various domains within RPE cells, with each one owning a specific metabolic activity. A defective clearance machinery may trigger unconventional solutions to avoid intracellular substrates’ accumulation through unconventional secretions. These components may be deposited between the RPE and Bruch’s membrane, thus generating the drusen, which remains the classic hallmark of AMD. These deposits may rather represent a witness of an abnormal RPE metabolism than a real pathogenic component. The empowerment of cell clearance, antioxidant, anti-inflammatory, and anti-angiogenic activity of the RPE by specific phytochemicals is here discussed

    Cerebral asymmetry in time perception

    No full text

    Lactoferrin protects against methamphetamine toxicity by modulating autophagy and mitochondrial status

    No full text
    Lactoferrin (LF) was used at first as a vehicle to deliver non‐soluble active compounds to the body, including the central nervous system (CNS). Nonetheless, it soon became evident that, apart from acting as a vehicle, LF itself owns active effects in the CNS. In the present study, the effects of LF are assessed both in baseline conditions, as well as to counteract methamphetamine (METH)‐induced neurodegeneration by assessing cell viability, cell phenotype, mitochondrial status, and specific autophagy steps. In detail, cell integrity in baseline conditions and following METH administration was carried out by using H&E staining, Trypan blue, Fluoro Jade B, and WST‐1. Western blot and immuno‐fluorescence were used to assess the expression of the neurofilament marker ÎČIII‐tubulin. Mitochondria were stained using Mito Tracker Red and Green and were further detailed and quantified by using transmission electron microscopy. Autophagy markers were analyzed through immuno‐fluorescence and electron microscopy. LF counteracts METH‐induced degeneration. In detail, LF significantly attenuates the amount of cell loss and mitochondrial alterations produced by METH; and mitigates the dissipation of autophagy‐related proteins from the autophagy compartment, which is massively induced by METH. These findings indicate a protective role of LF in the molecular mechanisms of neurodegeneration

    Nutraceuticals for dry age-related macular degeneration: a case report based on novel pathogenic and morphological insights

    No full text
    Age-related macular degeneration represents the main retinal disorder leading to irreversible blindness in people over the age of 50 in the Western World. Here we describe a case report, which suggest that specific nutraceutical compounds may exert beneficial effects on the progression of dry age-related macular degeneration (AMD), an eye disease with no approved treatment or cure. Specific antioxidants, such as lutein, resveratrol and Vaccinium Myrtillus, which are known to reduce the risk of developing AMD, when co-administered alone, were supplemented to diet of an informed patient suffering from dry AMD. The case report indicates an improvement of visual acuity and a long lasting decrease in druse volume and number. The concomitant intake of lutein, resveratrol and Vaccinium Myrtillus when administered for six months produced a marked decrease in the drusen observed at OCT at the 6-month follow-up. At this time interval, the patient experienced a noticeable improvement in visual acuity, a decrease in eye strain, more color contrast, higher visual definition. The case report indicates the potential benefit for a non-invasive treatment with improved quality of vision in dry AMD. A larger population followed over a long-term period is warranted. The support of nutraceuticals could therefore offer a new non-invasive, adverse effect-free which may restore the pathology affecting the cross talk between choroid and retinal cells. The results of this case report are discussed within the frame of molecular mechanisms synergizing site-specifically at the anatomical border between the outer retina and inner choroid

    Nanomapping of CD1d-glycolipid complexes on THP1 cells by using simultaneous topography and recognition imaging.

    No full text
    CD1d molecule, a monomorphic major histocompatibility complex class I-like molecule, presents different types of glycolipids to invariant natural killer T (iNKT) cells that play an important role in immunity to infection and tumors, as well as in regulating autoimmunity. Here, we present simultaneous topography and recognition imaging (TREC) analysis to detect density, distribution and localization of single CD1d molecules on THP1 cells that were loaded with different glycolipids. TREC was conducted using magnetically coated atomic force microscopy tips functionalized with a biotinylated iNKT cell receptor (TCR). The recognition map revealed binding sites visible as dark spots, resulting from oscillation amplitude reduction during specific binding between iNKT TCR and the CD1d-glycolipid complex. THP1 cells were pulsed with three different glycolipids (α-GalCer, C20 and OCH12) for 4 and 16 hr. Whereas CD1d-α-GalCer and CD1d-C20:2 complexes on cellular membrane formed smaller microdomains up to ~10 000 nm(2) (dimension area), OCH12 loaded CD1d complexes presented larger clusters with a dimension up to ~30 000 nm(2). Moreover, the smallest size of recognition spots was about 25 nm, corresponding to a single CD1d binding site. TREC successfully revealed the distribution and localization of CD1d-glycolipid complexes on THP1 cell with single molecule resolution under physiological conditions

    Morpho-physiological responses of pisum sativum l. To different light-emitting diode (led) light spectra in combination with biochar amendment

    No full text
    Light quality and nutrient availability are the primary factors that influence plant growth and development. In a research context of improving indoor plant cultivation while lowering environmental impact practices, we investigated the effect of different light spectra, three provided by light-emitting diodes (LEDs), and one by a fluorescent lamp, on the morpho-physiology of Pisum sativum L. seedlings grown in the presence/absence of biochar. We found that all morpho-physiological traits are sensitive to changes in the red-to-far-red light (R:FR) ratio related to the light spectra used. In particular, seedlings that were grown with a LED type characterized by the lowest R:FR ratio (∌2.7; AP67), showed good plant development, both above- and belowground, especially when biochar was present. Biochar alone did not affect the physiological traits, which were influenced by the interplay with lighting type. AP67 LED type had a negative impact only on leaf fluorescence emission in light conditions, which was further exacerbated by the addition of biochar to the growing media. However, we found that the combination of biochar with a specific optimal light spectrum may have a synergetic effect enhancing pea seedling physiological performances and fruit yield and fostering desired traits. This is a promising strategy for indoor plant production while respecting the environment

    Phytochemicals bridging autophagy induction and alpha-synuclein degradation in parkinsonism

    No full text
    Among nutraceuticals, phytochemical-rich compounds represent a source of naturally-derived bioactive principles, which are extensively studied for potential beneficial effects in a variety of disorders ranging from cardiovascular and metabolic diseases to cancer and neurodegeneration. In the brain, phytochemicals produce a number of biological effects such as modulation of neurotransmitter activity, growth factor induction, antioxidant and anti-inflammatory activity, stem cell modulation/neurogenesis, regulation of mitochondrial homeostasis, and counteracting protein aggregation through modulation of protein-folding chaperones and the cell clearing systems autophagy and proteasome. In particular, the ability of phytochemicals in restoring proteostasis through autophagy induction took center stage in recent research on neurodegenerative disorders such as Parkinson’s disease (PD). Indeed, autophagy dysfunctions and α-syn aggregation represent two interdependent downstream biochemical events, which concur in the parkinsonian brain, and which are targeted by phytochemicals administration. Therefore, in the present review we discuss evidence about the autophagy-based neuroprotective effects of specific phytochemical-rich plants in experimental parkinsonism, with a special focus on their ability to counteract alpha-synuclein aggregation and toxicity. Although further studies are needed to confirm the autophagy-based effects of some phytochemicals in parkinsonism, the evidence discussed here suggests that rescuing autophagy through natural compounds may play a role in preserving dopamine (DA) neuron integrity by counteracting the aggregation, toxicity, and prion-like spreading of α-syn, which remains a hallmark of PD
    corecore