9 research outputs found

    Long-term treatment of osteoporosis: safety and efficacy appraisal of denosumab

    Get PDF
    Denosumab is a fully human monoclonal antibody to the receptor activator of nuclear factor-κB ligand (RANKL), a member of the tumor necrosis factor receptor superfamily essential for osteoclastogenesis. Denosumab treatment is associated with a rapid, sustained, and reversible reduction in bone turnover markers, a continuous marked increase in bone mineral density at all sites, and a marked decrease in the risk of vertebral, hip, and nonvertebral fractures in women with postmenopausal osteoporosis. Therefore, it could be considered as an effective alternative to previous bisphosphonate treatment as well as first-line treatment of severe osteoporosis. Cost-effectiveness studies support this suggestion. In addition, denosumab seems to be the safest treatment option in patients with impaired renal function. Denosumab is characterized by reversibility of its effect after treatment discontinuation, in contrast with bisphosphonates. Large-scale clinical trials, including the extension of FREEDOM trial for up to 5 years, are reassuring for its safety. However, given its brief post-market period, vigilance regarding adverse events related to putative RANKL inhibition in tissues other than bone, as well as those related to bone turnover oversuppression, is advised

    Demand Response as a Service: Clearing Multiple Distribution-Level Markets

    Get PDF
    The uncertain and non-dispatchable nature of renewable energy sources renders Demand Response (DR) a critical component of modern electricity distribution systems. Demand Response (DR) service provision takes place via aggregators and special distribution-level markets (e.g., flexibility markets), where small, distributed DR resources, such as building energy management systems, electric vehicle charging stations, micro-generation and storage, connected to the low-voltage distribution grid, offer DR services. In such systems, energy balancing (and thus, also DR decisions) have to be made close to real-time. Thus, market clearing algorithms for DR service provision must fulfill several requirements related to the efficiency of their operation. More specifically, a DR market clearing algorithm needs to be optimal in terms of cost-efficiency, scalable in terms of number of assets and locations, and able to satisfy real-time constraints. In order to cope with these challenges, this paper presents a distributed DR market clearing algorithm based on Lagrangian decomposition, combined with an optimal cloud resource allocation algorithm for assigning the required computation power. A heuristic algorithm is also presented, able to achieve a near-optimal solution, within negligible computational time. Simulations, performed on a testbed, demonstrate the computational burden introduced by various DR models, as well as the heuristic algorithm's near-optimal performance. The resource allocation algorithm is able to service multiple DR requests (e.g. in multiple distribution networks), and minimize the cost of computational resources while respecting the execution time constraints of each request. This enables third parties to offer cost-efficient and competitive DR operation as a service

    Low bone mineral density and high bone turnover in patients with Non-Hodgkin's Lymphoma (NHL) who receive frontline therapy: results of a multicenter prospective study

    No full text
    Chemotherapy associated osteoporosis is a severe problem in patients with malignant diseases as it increases the risk for fractures and deteriorates quality of life. There are very limited data in the literature for the effect of chemotherapy on bone metabolism of adult patients with Non-Hodgkin Lymphoma (NHL). We prospectively evaluated bone remodeling pre- and post-chemotherapy in 61 patients with newly diagnosed NHL. First-line chemotherapy resulted in high bone turnover, which led to increased bone loss and reduced bone mineral density (BMD) of lumbar spine (L1-L4) and femur neck (FN). The reduction of L1-L4 and FN BMD post-chemo was more profound in males and in older patients (>55 years). Patients who received 8 cycles of chemotherapy had a greater reduction of L1-L4 and FN BMD as compared to 6 cycles. The administration of chemotherapy also resulted in a dramatic increase of bone resorption markers (CTX and TRACP-5b), bone formation markers, (bALP and Osteocalcin) and of osteoblast regulator Dickkopf-1. During study period, one patient had a pathological fracture in his right FN. © 2019 the Author(s). Published by Wolters Kluwer Health, Inc

    Prophylactic biological mesh reinforcement versus standard closure of stoma site (ROCSS): a multicentre, randomised controlled trial

    No full text
    Background: Closure of an abdominal stoma, a common elective operation, is associated with frequent complications; one of the commonest and impactful is incisional hernia formation. We aimed to investigate whether biological mesh (collagen tissue matrix) can safely reduce the incidence of incisional hernias at the stoma closure site. Methods: In this randomised controlled trial (ROCSS) done in 37 hospitals across three European countries (35 UK, one Denmark, one Netherlands), patients aged 18 years or older undergoing elective ileostomy or colostomy closure were randomly assigned using a computer-based algorithm in a 1:1 ratio to either biological mesh reinforcement or closure with sutures alone (control). Training in the novel technique was standardised across hospitals. Patients and outcome assessors were masked to treatment allocation. The primary outcome measure was occurrence of clinically detectable hernia 2 years after randomisation (intention to treat). A sample size of 790 patients was required to identify a 40% reduction (25% to 15%), with 90% power (15% drop-out rate). This study is registered with ClinicalTrials.gov, NCT02238964. Findings: Between Nov 28, 2012, and Nov 11, 2015, of 1286 screened patients, 790 were randomly assigned. 394 (50%) patients were randomly assigned to mesh closure and 396 (50%) to standard closure. In the mesh group, 373 (95%) of 394 patients successfully received mesh and in the control group, three patients received mesh. The clinically detectable hernia rate, the primary outcome, at 2 years was 12% (39 of 323) in the mesh group and 20% (64 of 327) in the control group (adjusted relative risk [RR] 0·62, 95% CI 0·43–0·90; p=0·012). In 455 patients for whom 1 year postoperative CT scans were available, there was a lower radiologically defined hernia rate in mesh versus control groups (20 [9%] of 229 vs 47 [21%] of 226, adjusted RR 0·42, 95% CI 0·26–0·69; p<0·001). There was also a reduction in symptomatic hernia (16%, 52 of 329 vs 19%, 64 of 331; adjusted relative risk 0·83, 0·60–1·16; p=0·29) and surgical reintervention (12%, 42 of 344 vs 16%, 54 of 346: adjusted relative risk 0·78, 0·54–1·13; p=0·19) at 2 years, but this result did not reach statistical significance. No significant differences were seen in wound infection rate, seroma rate, quality of life, pain scores, or serious adverse events. Interpretation: Reinforcement of the abdominal wall with a biological mesh at the time of stoma closure reduced clinically detectable incisional hernia within 24 months of surgery and with an acceptable safety profile. The results of this study support the use of biological mesh in stoma closure site reinforcement to reduce the early formation of incisional hernias. Funding: National Institute for Health Research Research for Patient Benefit and Allergan
    corecore