56 research outputs found

    Polytetrafluoroethylene (PTFE) suture vs fiberwire and polypropylene in flexor tendon repair

    Get PDF
    Background In this study, we evaluate the value of novel suture material based on monofilamentous-extruded polyfluoroethylene (PTFE) compared to polypropylene (PPL) and Fiberwire (FW). Materials and methods 60 flexor tendons were harvested from fresh cadaveric upper extremities. 4–0 sutures strands were used in the PPL, FW and PTFE group. Knotting properties and mechanical characteristics of the suture materials were evaluated. A 4-strand locked cruciate (Adelaide) or a 6-strand (M-Tang) suture technique was applied as core sutures for a tendon repair. Two-way ANOVA tests were performed with the Bonferroni correction. Results Stable knotting was achieved with 5 throws with the PPL material, 7 throws for FW and 9 throws for PTFE. In the PPL group, linear tensile strength was 45.92 ± 12.53 N, in the FW group 80.11 ± 18.34 N and in the PTFE group 76.16 ± 29.10 N. FW and PTFE are significantly stronger than PPL but show no significant difference among each other. Similar results were obtained in the subgroup comparisons for different repair techniques. The Adelaide and the M-Tang knotting technique showed no significant difference. Conclusion Fiberwire showed superior handling and knotting properties in comparison to PTFE. However, PTFE allows easier approximation of the stumps. In both, M-Tang and Adelaide repairs, PTFE was equal to FW in terms of repair strength. Both PTFE and FW provide for a robust tendon repair so that early active motion regimens for rehabilitation can be applied

    Individualized Wound Closure—Mechanical Properties of Suture Materials

    Get PDF
    Wound closure is a key element of any procedure, especially aesthetic and reconstructive plastic surgery. Therefore, over the last decades, several devices have been developed in order to assist surgeons in achieving better results while saving valuable time. In this work, we give a concise review of the literature and present a biomechanical study of different suturing materials under mechanical load mimicking handling in the operating theatre. Nine different suture products, all of the same USP size (4-0), were subjected to a standardized crushing load by means of a needle holder. All materials were subjected to 0, 1, 3 and 5 crushing load cycles, respectively. The linear tensile strength was measured by means of a universal testing device. Attenuation of tensile strength was evaluated between materials and between crush cycles. In the pooled analysis, the linear tensile strength of the suture materials deteriorated significantly with every cycle (p < 0.0001). The suture materials displayed different initial tensile strengths (in descending order: polyglecaprone, polyglactin, polydioxanone, polyamid, polypropylene). In comparison, materials performed variably in terms of resistance to crush loading. The findings were statistically significant. The reconstructive surgeon has to be flexible and tailor wound closure techniques and materials to the individual patient, procedure and tissue demands; therefore, profound knowledge of the physical properties of the suture strands used is of paramount importance. The crushing load on suture materials during surgery can be detrimental for initial and long-term wound repair strength. As well as the standard wound closure methods (sutures, staples and adhesive strips), there are promising novel devices

    De novo Generation of an Axially Vascularized Processed Bovine Cancellous-Bone Substitute in the Sheep Arteriovenous-Loop Model

    Get PDF
    Abstract Background/Aims: The aim of this study was to generate an axially vascularized bone substitute. The arteriovenous (AV)- loop approach in a large-animal model was applied in order to induce axial vascularization in a clinically approved processed bovine cancellous bone (PBCB) matrix of significant volume with primary mechanical stability and to assess the course of increasing axial vascularization. Methods: PBCB constructs were implanted into 13 merino sheep together with a microsurgically created AV loop in an isolation chamber. The vascularization process was monitored by sequential magnetic resonance imaging (MRI) scans. Explants were subjected to micro-computed tomography (micro-CT) analysis, histomorphometry and immunohistochemistry for CD31 and CD45. Results: Increasing axial vascularization in PBCB constructs was quantified by histomorphometry and visualized by micro-CT scans. Intravital sequential MRI scans demonstrated a significant progressive increase in perfused volume within the matrices. Immunohistochemistry confirmed endothelial lining of newly formed vessels. Conclusion: This study demonstrates successful axial vascularization of a clinically approved, mechanically stable bone substitute with a significant volume by a microsurgical AV loop in a large-animal model. Thus microsurgical transplantation of a tissue-engineered, axially vascularized and mechanically stable bone substitute with clinically relevant dimensions may become clinically feasible in the future

    Platelet lysate-based pro-angiogenic nanocoatings

    Get PDF
    Human platelet lysate (PL) is a cost-effective and human source of autologous multiple and potent pro-angiogenic factors, such as vascular endothelial growth factor A (VEGF A), fibroblast growth factor b (FGF b) and angiopoietin-1. Nanocoatings previously characterized were prepared by layer-by-layer assembling incorporating PL with marine-origin polysaccharides and were shown to activate human umbilical vein endothelial cells (HUVECs). Within 20 h of incubation, the more sulfated coatings induced the HUVECS to the form tube-like structures accompanied by an increased expression of angiogenicassociated genes, such as angiopoietin-1 and VEGF A. This may be a cost-effective approach to modify 2D/3D constructs to instruct angiogenic cells towards the formation of neo-vascularization, driven by multiple and synergistic stimulations from the PL combined with sulfated polysaccharides. Statement of Significance The presence, or fast induction, of a stable and mature vasculature inside 3D constructs is crucial for new tissue formation and its viability. This has been one of the major tissue engineering challenges, limiting the dimensions of efficient tissue constructs. Many approaches based on cells, growth factors, 3D bioprinting and channel incorporation have been proposed. Herein, we explored a versatile technique, layer-by-layer assembling in combination with platelet lysate (PL), that is a cost-effective source of many potent pro-angiogenic proteins and growth factors. Results suggest that the combination of PL with sulfated polyelectrolytes might be used to introduce interfaces onto 2D/3D constructs with potential to induce the formation of cell-based tubular structures.The research leading to these results has received funding from European Union's Seventh Framework Program (FP7/2007-2013) under grant agreement na REGPOT-CT2012-316331 - POLARIS and FP7-KBBE-2010-4-266033 - SPECIAL. This work was also supported by the European Research Council grant agreement ERC-2012-ADG-20120216-321266 for the project ComplexiTE. Portuguese Foundation for Science and Technology is gratefully acknowledged for fellowship of Sara M. Oliveira (SFRH/BD/70107/2010). The researcher contract of R.P. Pirraco through RL3-TECT-NORTE-01-0124-FEDER-000020, co-financed by North Portugal Regional Operational Program (ON.2-O Novo Norte), under the National Strategic Reference Framework, through the European Regional Development Fund is also acknowledged

    PHDs inhibitor DMOG promotes the vascularization process in the AV loop by HIF-1a up-regulation and the preliminary discussion on its kinetics in rat

    Get PDF
    Background The Arterovenous Loop (AV Loop) model is a vascularization model in tissue engineering research, which is capable of generating a three dimensional in vivo unit with cells as well as the supporting vessels within an isolation chmaber. In our previous studies the AV loop in the isolation chamber was discovered to undergo hypoxia, characterized by Hypoxia Inducible Factor (HIF) up-regulation. The vascularization followed the increase of HIF-α temporally, while it was spatially positively correlated with the HIF-α level, as well. This study aims to prove that HIF-1a up-regulation is the stimulus for vascularization in the AV loop model. Method The AV loop model in rats was created by interposing a femoral vein graft into the distal ends of the contralateral femoral artery and vein, and the loop was embeded in fibrin matrix and fixed in isolation chamber. PHD (prolyl hydroxylases) inhibitor DMOG (Dimethyloxallyl Glycine) was applied systemically in the rats in 40 mg/KG at day 0 and day 3 (DMOG-1), or in 15 mg/KG at day 8, day10 and day12 (DMOG-2). Two weeks later the specimens were explanted and underwent morphological and molecular evaluations. Results Compared to the control group, in the DMOG-2 group the HIF-1α positive rate was siginicantly raised as shown in immunohistochemistry staining, accompanied with a smaller cross section area and greater vessel density, and a HIF-1α accumulation in the kidney. The mRNA of HIF-1α and its angiogenic target gene all increased in different extends. Ki67 IHC demostrate more positive cells. There were no significant change in the DMOG-1 group. Conclusion By applying DMOG systemically, HIF-1α was up-regulated at the protein level and at the mRNA level, acompanied with angiogenic target gene up-regulateion, and the vascularization was promoted correspondingly. DMOG given at lower dosage constantly after one week tends to have better effect than the group given at larger dosage in the early stage in this model, and promotes cell proliferation, as evidenced by Ki67 IHC. Thus, this study proves that HIF-1a up-regulation is the stimulus for vascularization in the AV loop model and that the process of the vessel outgrowth can be controlled in the AV Loop model utilizing this mechanism

    50 years experience with Dupuytren's contracture in the Erlangen University Hospital – A retrospective analysis of 2919 operated hands from 1956 to 2006

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dupuytren's disease (DD) is a hand disorder mainly among the northern population. In contrast it is rare in the mediterranean population. Therefore typical habits and dietetic influences have been discussed as well as genetic predisposition. Still, since the first description by Dupuytren in 1834 only little is known about the etiology and pathogenesis of this disease. Some hints were found for a higher prevalence among people with diabetes, alcohol abuse or smoking. Also, intensive manual work or hand injuries have been discussed to have an influence on DD. To our knowledge this is the largest retrospectively evaluated series of symptomatic patients published to date. The study includes patients from the last 50 years. It was performed to show possible correlations between DD and typical risk factors such as diabetes, alcohol consumption, and smoking.</p> <p>Methods</p> <p>We retrospectively analysed all patient records with DD documented between 1956 and 2006 in the Surgical University Hospital in Erlangen. Data acquisition was conducted by reviewing the medical records from 1956 to 2006 including data from all patients who were surgically treated because of DD.</p> <p>Results</p> <p>We reviewed 2579 male and 340 female surgically treated patients with DD. More than 80% of the patients were between 40 and 70 years old. In 28.9% only the right hand was effected by DD, in 25.3% only the left hand and in 45.8% both hands. In 10.3% of all Patients suffered from Diabetes mellitus. Statistical analysis revealed no significant correlation between diabetes, alcoholism or smoking on the degree of DD in our patients.</p> <p>Conclusion</p> <p>Most data are consistent with previously published results from smaller, comparable retrospective studies with regard to right- or left handedness. We could not confirm a statistically significant correlation of DD with diabetes mellitus, severe alcohol consumption, heavy smoking or epilepsy and the stage of the disease as described in other studies. However, in the whole cohort of our operated patients during the last 50 years the prevalence of the above mentioned risk factors is slightly higher than in the normal population.</p

    Guanylate-binding protein 1 expression from embryonal endothelial progenitor cells reduces blood vessel density and cellular apoptosis in an axially vascularised tissue-engineered construct

    Get PDF
    BACKGROUND: Guanylate binding protein-1 (GBP-1) is a large GTPase which is actively secreted by endothelial cells. It is a marker and intracellular inhibitor of endothelial cell proliferation, migration, and invasion. We previously demonstrated that stable expression of GBP-1 in murine endothelial progenitor cells (EPC) induces their premature differentiation and decreases their migration capacity in vitro and in vivo. The goal of the present study was to assess the antiangiogenic capacity of EPC expressing GBP-1 (GBP-1-EPC) and their impact on blood vessel formation in an axially vascularized 3-D bioartificial construct in vivo. RESULTS: Functional in vitro testing demonstrated a significant increase in VEGF secretion by GBP-1-EPC after induction of cell differentiation. Undifferentiated GBP-1-EPC, however, did not secrete increased levels of VEGF compared to undifferentiated control EPC expressing an empty vector (EV-EPC). In our In vivo experiments, we generated axially vascularized tissue-engineered 3-D constructs. The new vascular network arises from an arterio-venous loop (AVL) embedded in a fibrin matrix inside a separation chamber. Total surface area of the construct as calculated from cross sections was larger after transplantation of GBP-1-EPC compared to control EV-EPC. This indicated reduced formation of fibrovascular tissue and less resorption of fibrin matrix compared to constructs containing EV-EPC. Most notably, the ratio of blood vessel surface area over total construct surface area in construct cross sections was significantly reduced in the presence of GBP-1-EPC. This indicates a significant reduction of blood vessel density and thereby inhibition of blood vessel formation from the AVL constructs caused by GBP-1. In addition, GBP-1 expressed from EPC significantly reduced cell apoptosis compared to GBP-1-negative controls. CONCLUSION: Transgenic EPC expressing the proinflammatory antiangiogenic GTPase GBP-1 can reduce blood vessel density and inhibit apoptosis in a developing bioartificial vascular network and may become a new powerful tool to manipulate angiogenetic processes in tissue engineering and other pathological conditions such as tumour angiogenesis

    Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy

    Get PDF
    This study describes a novel type of interstitial (stromal) cell — telocytes (TCs) — in the human and mouse respiratory tree (terminal and respiratory bronchioles, as well as alveolar ducts). TCs have recently been described in pleura, epicardium, myocardium, endocardium, intestine, uterus, pancreas, mammary gland, etc. (see www.telocytes.com). TCs are cells with specific prolongations called telopodes (Tp), frequently two to three per cell. Tp are very long prolongations (tens up to hundreds of μm) built of alternating thin segments known as podomers (≤ 200 nm, below the resolving power of light microscope) and dilated segments called podoms, which accommodate mitochondria, rough endoplasmic reticulum and caveolae. Tp ramify dichotomously, making a 3-dimensional network with complex homo- and heterocellular junctions. Confocal microscopy reveals that TCs are c-kit- and CD34-positive. Tp release shed vesicles or exosomes, sending macromolecular signals to neighboring cells and eventually modifying their transcriptional activity. At bronchoalveolar junctions, TCs have been observed in close association with putative stem cells (SCs) in the subepithelial stroma. SCs are recognized by their ultrastructure and Sca-1 positivity. Tp surround SCs, forming complex TC-SC niches (TC-SCNs). Electron tomography allows the identification of bridging nanostructures, which connect Tp with SCs. In conclusion, this study shows the presence of TCs in lungs and identifies a TC-SC tandem in subepithelial niches of the bronchiolar tree. In TC-SCNs, the synergy of TCs and SCs may be based on nanocontacts and shed vesicles
    corecore