2,026 research outputs found

    On embeddings of proper and equicontinuous actions in zero-dimensional compactifications

    Full text link
    We provide a tool for studying properly discontinuous actions of non-compact groups on locally compact, connected and paracompact spaces, by embedding such an action in a suitable zero-dimensional compactification of the underlying space with pleasant properties. Precisely, given such an action (G,X)(G,X) we construct a zero-dimensional compactification μX\mu X of XX with the properties: (a) there exists an extension of the action on μX\mu X, (b) if μLμXX\mu L\subseteq \mu X\setminus X is the set of the limit points of the orbits of the initial action in μX\mu X, then the restricted action (G,μXμL)(G,\mu X\setminus \mu L) remains properly discontinuous, is indivisible and equicontinuous with respect to the uniformity induced on μXμL\mu X\setminus \mu L by that of μX\mu X, and (c) μX\mu X is the maximal among the zero-dimensional compactifications of XX with these properties. Proper actions are usually embedded in the end point compactification ϵX\epsilon X of XX, in order to obtain topological invariants concerning the cardinality of the space of the ends of XX, provided that XX has an additional "nice" property of rather local character ("property Z", i.e., every compact subset of XX is contained in a compact and connected one). If the considered space has this property, our new compactification coincides with the end point one. On the other hand, we give an example of a space not having the "property Z" for which our compactification is different from the end point compactification. As an application, we show that the invariant concerning the cardinality of the ends of XX holds also for a class of actions strictly containing the properly discontinuous ones and for spaces not necessarily having "property Z".Comment: 18 page

    Impact of an AGN featureless continuum on estimation of stellar population properties

    Full text link
    The effect of the featureless power-law (PL) continuum of an active galactic nucleus (AGN) on the estimation of physical properties of galaxies with optical population spectral synthesis (PSS) remains largely unknown. With this in mind, we fit synthetic galaxy spectra representing a wide range of galaxy star formation histories (SFHs) and including distinct PL contributions of the form FνναF_{\nu} \propto \nu^{-\alpha} with the PSS code STARLIGHT to study to which extent various inferred quantities (e.g. stellar mass, mean age, and mean metallicity) match the input. The synthetic spectral energy distributions (SEDs) computed with our evolutionary spectral synthesis code include an AGN PL component with 0.5α20.5 \leq \alpha \leq 2 and a fractional contribution 0.2xAGN0.80.2 \leq x_{\mathrm{AGN}} \leq 0.8 to the monochromatic flux at 4020 \AA. At the empirical AGN detection threshold xAGN0.26x_{\mathrm{AGN}}\simeq 0.26 that we previously inferred in a pilot study on this subject, our results show that the neglect of a PL component in spectral fitting can lead to an overestimation by \sim2 dex in stellar mass and by up to \sim1 and \sim4 dex in the light- and mass-weighted mean stellar age, respectively, whereas the light- and mass-weighted mean stellar metallicity are underestimated by up to \sim0.3 and \sim0.6 dex, respectively. Other fitting set-ups including either a single PL or multiple PLs in the base reveal, on average, much lower unsystematic uncertainties of the order of those typically found when fitting purely stellar SEDs with stellar templates, however, reaching locally up to \sim1, 3 and 0.4 dex in mass, age and metallicity, respectively. Our results underscore the importance of an accurate modelling of the AGN spectral contribution in PSS fits as a minimum requirement for the recovery of the physical and evolutionary properties of stellar populations in active galaxies.Comment: 18 pages, 22 figures, accepted for publication in A&

    SLM-based Digital Adaptive Coronagraphy: Current Status and Capabilities

    Full text link
    Active coronagraphy is deemed to play a key role for the next generation of high-contrast instruments, notably in order to deal with large segmented mirrors that might exhibit time-dependent pupil merit function, caused by missing or defective segments. To this purpose, we recently introduced a new technological framework called digital adaptive coronagraphy (DAC), making use of liquid-crystal spatial light modulators (SLMs) display panels operating as active focal-plane phase mask coronagraphs. Here, we first review the latest contrast performance, measured in laboratory conditions with monochromatic visible light, and describe a few potential pathways to improve SLM coronagraphic nulling in the future. We then unveil a few unique capabilities of SLM-based DAC that were recently, or are currently in the process of being, demonstrated in our laboratory, including NCPA wavefront sensing, aperture-matched adaptive phase masks, coronagraphic nulling of multiple star systems, and coherent differential imaging (CDI).Comment: 14 pages, 9 figures, to appear in Proceedings of the SPIE, paper 10706-9

    Fitting Analysis using Differential Evolution Optimization (FADO): Spectral population synthesis through genetic optimization under self-consistency boundary conditions

    Full text link
    The goal of population spectral synthesis (PSS) is to decipher from the spectrum of a galaxy the mass, age and metallicity of its constituent stellar populations. This technique has been established as a fundamental tool in extragalactic research. It has been extensively applied to large spectroscopic data sets, notably the SDSS, leading to important insights into the galaxy assembly history. However, despite significant improvements over the past decade, all current PSS codes suffer from two major deficiencies that inhibit us from gaining sharp insights into the star-formation history (SFH) of galaxies and potentially introduce substantial biases in studies of their physical properties (e.g., stellar mass, mass-weighted stellar age and specific star formation rate). These are i) the neglect of nebular emission in spectral fits, consequently, ii) the lack of a mechanism that ensures consistency between the best-fitting SFH and the observed nebular emission characteristics of a star-forming (SF) galaxy. In this article, we present FADO (Fitting Analysis using Differential evolution Optimization): a conceptually novel, publicly available PSS tool with the distinctive capability of permitting identification of the SFH that reproduces the observed nebular characteristics of a SF galaxy. This so-far unique self-consistency concept allows us to significantly alleviate degeneracies in current spectral synthesis. The innovative character of FADO is further augmented by its mathematical foundation: FADO is the first PSS code employing genetic differential evolution optimization. This, in conjunction with other unique elements in its mathematical concept (e.g., optimization of the spectral library using artificial intelligence, convergence test, quasi-parallelization) results in key improvements with respect to computational efficiency and uniqueness of the best-fitting SFHs.Comment: 25 pages, 12 figures, A&A accepte

    A simple optimized amplitude pupil mask for attempting to direct imaging of Proxima b with SPHERE/ZIMPOL at VLT

    Full text link
    Proxima b is a terrestrial exoplanet orbiting in the habitable zone of our closest star Proxima Centauri. The separation between the planet and the star is about 40 mas and this is with current instruments only reachable with direct imaging, using a visual extreme AO system like SPHERE/ZIMPOL. Unfortunately, the planet falls under the first airy ring at 2λ\lambda/D in the I band, which degrades achievable contrast. We present the design, optical simulations and testing of an amplitude pupil mask for ZIMPOL that reshapes the PSF, increasing the contrast at r=2λr = 2\lambda/D about an order of magnitude. The simple mask can be inserted directly into the current setup of SPHERE.Comment: 11 pages, 8 figures, Poster presented at SPIE Astronomical Telescopes and Instrumentation 201

    Reconciling diverse lacustrine and terrestrial system response to penultimate deglacial warming in southern Europe

    Get PDF
    Unlike the most recent deglaciation, the regional expression of climate changes during the penultimate deglaciation remains understudied, even though it led into a period of excess warmth with estimates of global average temperature 1–2 °C, and sea level ∼6 m, above pre-industrial values. We present the first complete high-resolution southern European diatom record capturing the penultimate glacial-interglacial transition, from Lake Ioannina (northwest Greece). It forms part of a suite of proxies selected to assess the character and phase relationships of terrestrial and aquatic ecosystem response to rapid climate warming, and to resolve apparent conflicts in proxy evidence for regional paleohydrology. The diatom data suggest a complex penultimate deglaciation driven primarily by multiple oscillations in lake level, and provide firm evidence for the regional influence of abrupt changes in North Atlantic conditions. There is diachroneity in lake and terrestrial ecosystem response to warming at the onset of the last interglacial, with an abrupt increase in lake level occurring ∼2.7 k.y. prior to sustained forest expansion with peak precipitation. We identify the potentially important role of direct input of snow melt and glacial meltwater transfer to the subterranean karst system in response to warming, which would cause rising regional groundwater levels. This explanation, and the greater sensitivity of diatoms to subtle changes in temperature, reconciles the divergent lacustrine and terrestrial proxy evidence and highlights the sensitivity of lakes situated in mountainous karstic environments to past climate warming
    corecore