106 research outputs found

    Hormesis and Its Place in Nonmonotonic Dose–Response Relationships: Some Scientific Reality Checks

    Get PDF
    OBJECTIVE: This analysis is a critical assessment of current hormesis literature. I discuss definitions, characterization, generalizability, mechanisms, absence of empirical data specific for hormesis hypothesis testing, and arguments that hormesis be the “default assumption” in risk assessment. DATA SOURCES: Hormesis, a biological phenomenon typically described as low-dose stimulation from substances producing higher-dose inhibition, has recently garnered interest in several quarters. The principal sources of published materials for this analysis are the writings of certain proponents of hormesis. Surprisingly few systematic critiques of current hormesis literature exist. Limits to the phenomenon’s appropriate role in risk assessment and health policy have been published. DATA SYNTHESIS: Serious gaps in scientific understanding remain: a stable definition; generalizability, especially for humans; a clear mechanistic basis; limitations in the presence of multiple toxic end points, target organs, and mechanisms. Absence of both arms-length, consensus-driven, scientific evaluations and empirical data from studies specifically designed for hormesis testing have limited its acceptance. CONCLUSIONS: Definition, characterization, occurrence, and mechanistic rationale for hormesis will remain speculative, absent rigorous studies done specifically for hormesis testing. Any role for hormesis in current risk assessment and regulatory policies for toxics remains to be determined

    Investigation of Natural Effective Gamma Dose Rates case study: Ardabil Province in Iran

    Get PDF
    Gamma rays pose enough energy to form charged particles and adversely affect human health. Since, the external exposure of human beings to natural environmental gamma radiation normally exceeds that from all man-made sources combined, natural background gamma dose rates and corresponding annual effective doses were determined for selected cities of Ardabil province from 2009 to 2010. Outdoor gamma dose rates were measured using an Ion Chamber Survey Meter in 105 locations in selected districts. Average absorbed dose for Ardabil, Sar-Ein, Germy, Neer, Shourabil Recreational Lake, and Kosar were determined as 265, 219, 344, 233, 352, and 358 nSvh-1, respectively. Although dose rates recorded for Germi and Kosar are comparable with some areas with high natural radiation background, however, the dose rates in other districts are well below the levels reported for such locations. Average annual effective dose due to indoor and outdoor gamma radiation for Ardabil province was estimated to be 1.73 (1.35-2.39) mSv, which is on average 2 times higher than the world population weighted average

    وجود ذخیره آهن در دسترس جهت خونسازی

    No full text

    Hepatic Iron Deposition in Humans

    No full text
    corecore