95 research outputs found

    Impact of the Gut Microbiota on Atorvastatin Mediated Effects on Blood Lipids

    Get PDF
    Background and aims: The mechanisms of interindividual variation of lipid regulation by statins, such as the low-density lipoprotein cholesterol (LDL) lowering effects, are not fully understood yet. Here, we used a gut microbiota depleted mouse model to investigate the relation between the gut microbiota and the regulatory property of atorvastatin on blood lipids. Methods: Mice (C57BL/6) with intact gut microbiota or antibiotic induced abiotic mice (ABS) were put on standard chow diet (SCD) or high fat diet (HFD) for six weeks. Atorvastatin (10 mg/kg body weight/day) or a control vehicle were applied per gavage for the last four weeks of dietary treatment. Blood lipids including total cholesterol, very low-density lipoprotein, low-density lipoprotein, high-density lipoprotein and sphingolipids were measured to probe microbiota-dependent effects of atorvastatin. The expression of genes involved in hepatic and intestinal cholesterol metabolism was analyzed with qRT-PCR. The alteration of the microbiota profile was examined using 16S rRNA qPCR in mice with intact gut microbiota. Results: HFD feeding significantly increased total blood cholesterol and LDL levels, as compared to SCD in both mice with intact and depleted gut microbiota. The cholesterol lowering effect of atorvastatin was significantly attenuated in mice with depleted gut microbiota. Moreover, we observed a global shift in the abundance of several sphingolipids upon atorvastatin treatment which was absent in gut microbiota depleted mice. The regulatory effect of atorvastatin on the expression of distinct hepatic and intestinal cholesterol-regulating genes, including Ldlr, Srebp2 and Npc1l1 was altered upon depletion of gut microbiota. In response to HFD feeding, the relative abundance of the bacterial phyla Bacteroidetes decreased, while the abundance of Firmicutes increased. The altered ratio between Firmicutes to Bacteroidetes was partly reversed in HFD fed mice treated with atorvastatin. Conclusions: Our findings support a regulatory impact of atorvastatin on the gut microbial profile and, in turn, demonstrate a crucial role of the gut microbiome for atorvastatin-related effects on blood lipids. These results provide novel insights into potential microbiota-dependent mechanisms of lipid regulation by statins, which may account for variable response to statin treatment

    Acetic acid guided biopsies in Barrett’s surveillance for neoplasia detection versus non-targeted biopsies (Seattle protocol):a feasibility study for a randomised tandem endoscopy trial. The ABBA study.

    Get PDF
    <div><p>MiRNAs function in post-transcriptional regulation of gene expression and play very important roles in plant development. <i>Lonicera japonica</i> is one of the important medicinal plants in China. However, few studies on the discovery of conserved and novel miRNAs from <i>L</i>. <i>japonica</i> were reported. In this study, we employed deep sequencing technology to identify miRNAs in leaf and flower tissues of <i>L</i>. <i>japonica</i>. A total of 22.97 million clean reads from flower and leaf tissues were obtained, which generated 146 conserved miRNAs distributed in 20 families and 110 novel miRNAs. Accordingly, 72 differentially expressed miRNAs (P≤0.001) between leaves and flowers and their potential target genes were identified and validated. The qRT-PCR validation showed that majority of the differentially expressed miRNAs showed significant tissue-specific expression in <i>L</i>. <i>japonica</i>. Furthermore, the miRNA-mRNA and mRNA-mRNA regulatory networks were constructed using Cytoscape software. Taken together, this study identified a large number of miRNAs and target genes in <i>L</i>. <i>japonica</i>, which not only provides the first global miRNA expression profiles, but also sheds light on functional genomics research on <i>L</i>. <i>japonica</i> in the future.</p></div
    • …
    corecore