50 research outputs found

    In vitro acellular dissolution of mineral fibres: A comparative study

    Get PDF
    The study of the mechanisms by which mineral fibres promote adverse effects in both animals and humans is a hot topic of multidisciplinary research with many aspects that still need to be elucidated. Besides length and diameter, a key parameter that determines the toxicity/pathogenicity of a fibre is biopersistence, one component of which is biodurability. In this paper, biodurability of mineral fibres of social and economic importance (chrysotile, amphibole asbestos and fibrous erionite) has been determined for the first time in a systematic comparative way from in vitro acellular dissolution experiments. Dissolution was possible using the Gamble solution as simulated lung fluid (pH = 4 and at body temperature) so to reproduce the macrophage phagolysosome environment. The investigated mineral fibres display very different dissolution rates. For a 0.25 ÎĽm thick fibre, the calculated dissolution time of chrysotile is in the range 94-177 days, very short if compared to that of amphibole fibres (49-245 years), and fibrous erionite (181 years). Diffraction and SEM data on the dissolution products evidence that chrysotile rapidly undergoes amorphization with the formation of a nanophasic silica-rich fibrous metastable pseudomorph as first dissolution step whereas amphibole asbestos and fibrous erionite show minor signs of dissolution even after 9-12 months

    Where is iron in erionite? A multidisciplinary study on fibrous erionite-Na from Jersey (Nevada, USA)

    Get PDF
    Fibrous erionite is a mineral fibre of great concern but to date mechanisms by which it induces cyto- and geno-toxic damage, and especially the role of iron associated to this zeolite species, remain poorly understood. One of the reasons is that we still don\u2019t know exactly where iron is in natural erionite. This work is focused on fibrous erionite-Na from Jersey (Nevada, USA) and attempts to draw a general model of occurrence of iron in erionite and relationship with toxicity mechanisms. It was found that iron is present as 6-fold coordinated Fe3+ not part of the zeolite structure. The heterogeneous nature of the sample was revealed as receptacle of different iron-bearing impurities (amorphous iron-rich nanoparticles, micro-particles of iron oxides/hydroxides, and flakes of nontronite). If iron is not part of the structure, its role should be considered irrelevant for erionite toxicity, and other factors like biopersistence should be invoked. An alternative perspective to the proposed model is that iron rich nano-particles and nontronite dissolve in the intracellular acidic environment, leaving a residue of iron atoms at specific surface sites anchored to the windows of the zeolite channels. These sites may be active later as low nuclearity groups

    Infra red spectroscopy of the regulated asbestos amphiboles

    Get PDF
    Vibrational spectroscopies (Fourier Transform Infra Red, FTIR, and Raman) are exceptionally valuable tools for the identification and crystal\u2013chemical study of fibrous minerals, and asbestos amphiboles in particular. Raman spectroscopy has been widely applied in toxicological studies and thus a large corpus of reference data on regulated species is found in the literature. However, FTIR spectroscopy has been mostly used in crystal\u2013chemical studies and very few data are found on asbestos amphiboles. This paper is intended to fill this gap. We report new FTIR data collected on a suite of well-characterized samples of the five regulated amphibole species: anthophyllite, amosite, and crocidolite, provided by the Union for International Cancer Control (UICC) Organization, and tremolite and actinolite, from two well-known occurrences. The data from these reference samples have been augmented by results from additional specimens to clarify some aspects of their spectroscopic features. We show that the FTIR spectra in both the OH-stretching region and in the lattice modes region can be effective for rapid identification of the asbestos type

    Evolutionary History of Tissue Kallikreins

    Get PDF
    The gene family of human kallikrein-related peptidases (KLKs) encodes proteins with diverse and pleiotropic functions in normal physiology as well as in disease states. Currently, the most widely known KLK is KLK3 or prostate-specific antigen (PSA) that has applications in clinical diagnosis and monitoring of prostate cancer. The KLK gene family encompasses the largest contiguous cluster of serine proteases in humans which is not interrupted by non-KLK genes. This exceptional and unique characteristic of KLKs makes them ideal for evolutionary studies aiming to infer the direction and timing of gene duplication events. Previous studies on the evolution of KLKs were restricted to mammals and the emergence of KLKs was suggested about 150 million years ago (mya). In order to elucidate the evolutionary history of KLKs, we performed comprehensive phylogenetic analyses of KLK homologous proteins in multiple genomes including those that have been completed recently. Interestingly, we were able to identify novel reptilian, avian and amphibian KLK members which allowed us to trace the emergence of KLKs 330 mya. We suggest that a series of duplication and mutation events gave rise to the KLK gene family. The prominent feature of the KLK family is that it consists of tandemly and uninterruptedly arrayed genes in all species under investigation. The chromosomal co-localization in a single cluster distinguishes KLKs from trypsin and other trypsin-like proteases which are spread in different genetic loci. All the defining features of the KLKs were further found to be conserved in the novel KLK protein sequences. The study of this unique family will further assist in selecting new model organisms for functional studies of proteolytic pathways involving KLKs

    Bulk spectroscopy of mineral fibres

    No full text
    Spectroscopic methods are utilized widely for characterizing minerals and other geomaterials in terms of electronic, vibrational and nuclear properties. The basics and applications of spectroscopic methods in mineralogy were reported comprehensively by Hawthorne (1988), and later discussed carefully and updated by Burns (1993) and Clark (1999), by Beran and Libowitzky (2004) and more recently by Henderson et al. (2014). These esteemed books and reviews focused generally on topics of immediate mineralogical interest, but nevertheless contain stimulating parallel excursions into the fields of geology and materials sciences. This chapter is built on the shoulders of those giants and is devoted specifically to exploring spectroscopic investigations of electronic and nuclear properties of mineral fibres, a topic not reviewed previously. A number of spectroscopies (though not all) will be mentioned without covering in detail their physical bases (which can be found easily in the books and reviews mentioned above), because this chapter is intended to serve as a review of their contribution to increasing comprehension of the bulk properties of mineral fibres

    Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties

    No full text
    Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for construction purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties

    Crystal chemistry of the high temperature product of transformation of cement-asbestos

    No full text
    In this work, the high-temperature inertization product of a representative batch of samples of cement-asbestos (CA) from different localities in Italy have been characterized with a multidisciplinary approach. All the raw CA samples were heated at 1200°C for 15 min. After firing, they underwent a series of solid state reactions leading to global structural changes of the matrix. Effects of annealing time and temperature on the crystallization kinetics were thoroughly investigated. Both factors acted in favour of equilibrium. Three classes of CA were identified with the aid of phase diagrams and of specific plots relating chemical and mineralogical parameters. This result was considered of importance in view of the potential use of transformed cement-asbestos as a secondary raw material. In principle, the content of CA packages removed from the environment and their corresponding heat-treated products can be classified simply using XRF. This method allows for the selection of appropriate fractions in function of the most suitable recycling solution adopted. Samples belonging to the class called larnite-rich, turned out to be of great interest as possible candidate for substituting a fraction of cement in many building materials and innovative green cement productions

    Comprehensive Analysis of Two H13-Type Starting Materials Used for Laser Cladding and Aerosol Particles Formed in This Process

    No full text
    Laser cladding with H13 steel powders was performed and the related material transformations were studied for the particles emitted during this process. Fractions of various sizes of the aerosol particles formed during the laser cladding were collected on a cascade impactor, while the electromobility and the aerodynamic size of the particles were measured using a scanning mobility particle spectrometer and an aerodynamic particle sizer, respectively. The aerosol particles deposited onto the impactor plates were analyzed using scanning electron microscopy–energy-dispersive X-ray spectroscopy, as well as total-reflection X-ray fluorescence and X-ray absorption near-edge structure spectroscopy. Both the concentration and mean oxidation state of the major components were correlated with the aerosol particle size. The ultrafine aerosol particles (with a diameter less than about 100 nm) were predominantly oxidized and formed as the result of an evaporation–oxidation–condensation process sequence. The larger particles (>200 nm in geometric diameter) were primarily the residues of the original metal powder and exhibited a composition change as compared to the as-received metal powder. Correlations between the changes in the concentration ratio of the components were detected and explained
    corecore