9,983 research outputs found

    Using think-aloud interviews to characterize model-based reasoning in electronics for a laboratory course assessment

    Full text link
    Models of physical systems are used to explain and predict experimental results and observations. The Modeling Framework for Experimental Physics describes the process by which physicists revise their models to account for the newly acquired observations, or change their apparatus to better represent their models when they encounter discrepancies between actual and expected behavior of a system. While modeling is a nationally recognized learning outcome for undergraduate physics lab courses, no assessments of students' model-based reasoning exist for upper-division labs. As part of a larger effort to create two assessments of students' modeling abilities, we used the Modeling Framework to develop and code think-aloud problem-solving activities centered on investigating an inverting amplifier circuit. This study is the second phase of a multiphase assessment instrument development process. Here, we focus on characterizing the range of modeling pathways students employ while interpreting the output signal of a circuit functioning far outside its recommended operation range. We end by discussing four outcomes of this work: (1) Students engaged in all modeling subtasks, and they spent the most time making measurements, making comparisons, and enacting revisions; (2) Each subtask occurred in close temporal proximity to all over subtasks; (3) Sometimes, students propose causes that do not follow logically from observed discrepancies; (4) Similarly, students often rely on their experiential knowledge and enact revisions that do not follow logically from articulated proposed causes.Comment: 18 pages, 5 figure

    Perceptually smooth timbral guides by state-space analysis of phase-vocoder parameters

    Get PDF
    Sculptor is a phase-vocoder-based package of programs that allows users to explore timbral manipulation of sound in real time. It is the product of a research program seeking ultimately to perform gestural capture by analysis of the sound a performer makes using a conventional instrument. Since the phase-vocoder output is of high dimensionality — typically more than 1,000 channels per analysis frame—mapping phase-vocoder output to appropriate input parameters for a synthesizer is only feasible in theory

    Characterizing lab instructors' self-reported learning goals to inform development of an experimental modeling skills assessment

    Full text link
    The ability to develop, use, and refine models of experimental systems is a nationally recognized learning outcome for undergraduate physics lab courses. However, no assessments of students' model-based reasoning exist for upper-division labs. This study is the first step toward development of modeling assessments for optics and electronics labs. In order to identify test objectives that are likely relevant across many institutional contexts, we interviewed 35 lab instructors about the ways they incorporate modeling in their course learning goals and activities. The study design was informed by the Modeling Framework for Experimental Physics. This framework conceptualizes modeling as consisting of multiple subtasks: making measurements, constructing system models, comparing data to predictions, proposing causes for discrepancies, and enacting revisions to models or apparatus. We found that each modeling subtask was identified by multiple instructors as an important learning outcome for their course. Based on these results, we argue that test objectives should include probing students' competence with most modeling subtasks, and test items should be designed to elicit students' justifications for choosing particular modeling pathways. In addition to discussing these and other implications for assessment, we also identify future areas of research related to the role of modeling in optics and electronics labs.Comment: 24 pages, 2 figures, 5 tables; submitted to Phys. Rev. PE

    Bayesian hierarchical model for the prediction of football results

    Get PDF
    The problem of modelling football data has become increasingly popular in the last few years and many different models have been proposed with the aim of estimating the characteristics that bring a team to lose or win a game, or to predict the score of a particular match. We propose a Bayesian hierarchical model to fulfil both these aims and test its predictive strength based on data about the Italian Serie A 1991-1992 championship. To overcome the issue of overshrinkage produced by the Bayesian hierarchical model, we specify a more complex mixture model that results in a better fit to the observed data. We test its performance using an example of the Italian Serie A 2007-2008 championship

    Delivering organisational adaptation through legislative mechanisms: Evidence from the Adaptation Reporting Power (Climate Change Act 2008)

    Get PDF
    There is increasing recognition that organisations, particularly in key infrastructure sectors, are potentially vulnerable to climate change and extreme weather events, and require organisational responses to ensure they are resilient and adaptive. However, detailed evidence of how adaptation is facilitated, implemented and reported, particularly through legislative mechanisms is lacking. The United Kingdom Climate Change Act (2008), introduced the Adaptation Reporting Power, enabling the Government to direct so-called reporting authorities to report their climate change risks and adaptation plans. We describe the authors' unique role and experience supporting the Department for Environment, Food and Rural Affairs (Defra) during the Adaptation Reporting Power's first round. An evaluation framework, used to review the adaptation reports, is presented alongside evidence on how the process provides new insights into adaptation activities and triggered organisational change in 78% of reporting authorities, including the embedding of climate risk and adaptation issues. The role of legislative mechanisms and risk-based approaches in driving and delivering adaptation is discussed alongside future research needs, including the development of organisational maturity models to determine resilient and well adapting organisations. The Adaptation Reporting Power process provides a basis for similar initiatives in other countries, although a clear engagement strategy to ensure buy-in to the process and research on its long-term legacy, including the potential merits of voluntary approaches, is required

    Developing a Survey of PGT Students

    Get PDF

    Is subdiffusional transport slower than normal?

    Full text link
    We consider anomalous non-Markovian transport of Brownian particles in viscoelastic fluid-like media with very large but finite macroscopic viscosity under the influence of a constant force field F. The viscoelastic properties of the medium are characterized by a power-law viscoelastic memory kernel which ultra slow decays in time on the time scale \tau of strong viscoelastic correlations. The subdiffusive transport regime emerges transiently for t<\tau. However, the transport becomes asymptotically normal for t>>\tau. It is shown that even though transiently the mean displacement and the variance both scale sublinearly, i.e. anomalously slow, in time, ~ F t^\alpha, ~ t^\alpha, 0<\alpha<1, the mean displacement at each instant of time is nevertheless always larger than one obtained for normal transport in a purely viscous medium with the same macroscopic viscosity obtained in the Markovian approximation. This can have profound implications for the subdiffusive transport in biological cells as the notion of "ultra-slowness" can be misleading in the context of anomalous diffusion-limited transport and reaction processes occurring on nano- and mesoscales
    corecore