5 research outputs found

    Pre-Columbian lead pollution from Native American galena processing and land use in the midcontinental United States

    Get PDF
    The presence and sources of pre-Columbian (before 1492 CE) lead (Pb) pollution in the midcontinental United States were investigated using geochemical and Pb isotope analyses on sediment cores recovered from Avery Lake, a floodplain lake located directly adjacent to the Kincaid Mounds archaeological site on the lower Ohio River, Illinois. Geochemical results indicate the presence of Pb pollution during the Baumer (300 BCE to 300 CE) and Mississippian (1150–1450 CE) occupations, and since the 1800s. Pb isotope results link Mississippian Pb pollution to the processing and use of galena primarily from southeastern and/or central Missouri, and to a lesser extent the upper Mississippi River valley, with ∼1.5 t (metric tons) of galena-derived Pb deposited in Avery Lake during this time. Pb pollution during the Baumer phase, equating to ∼0.4 t of Pb, was not accompanied by a Pb isotope excursion and most likely originated from local biomass burning. These results provide new information about the environmental impacts associated with pre-Columbian Native Americans’ interaction with and utilization of their landscape and its resources

    Genetic influences in the aetiology of tears of the rotator cuff: Sibling risk of a full-thickness tear

    No full text
    From a retrospective, cohort study of 205 patients diagnosed with full-thickness tears of the rotator cuff, we determined, using ultrasound, the prevalence of such tears in their 129 siblings. Using 150 spouses as controls, the relative risk of full-thickness tears in siblings versus controls was 2.42 (95% CI 1.77 to 3.31). The relative risk of symptomatic full-thickness tears in siblings versus controls was 4.65 (95% CI 2.42 to 8.63). The significantly increased risk for tears in siblings implies that genetic factors play a major role in the development of full-thickness tears of the rotator cuff

    Genetic influences in the progression of tears of the rotator cuff.

    No full text
    The aim of this study was to investigate genetic influences on the development and progression of tears of the rotator cuff. From a group of siblings of patients with a tear of the rotator cuff and of controls studied five years earlier, we determined the prevalence of tears of the rotator cuff with and without associated symptoms using ultrasound and the Oxford Shoulder Score. In the five years since the previous assessment, three of 62 (4.8%) of the sibling group and one of the 68 (1.5%) controls had undergone shoulder surgery. These subjects were excluded from the follow-up. Full-thickness tears were found in 39 of 62 (62.9%) siblings and in 15 of 68 (22.1%) controls (p = 0.0001). The relative risk of full-thickness tears in siblings as opposed to controls was 2.85 (95% confidence interval (CI) 1.75 to 4.64), compared to 2.42 (95% CI 1.77 to 3.31) five years earlier. Full-thickness tears associated with pain were found in 30 of 39 (76.9%) tears in the siblings and in eight of 15 (53.3%) tears in the controls (p = 0.045). The relative risk of pain associated with a full-thickness tear in the siblings as opposed to the controls was 1.44 (95% CI 2.04 to 8.28) (p = 0.045). In the siblings group ten of 62 (16.1%) had progressed in terms of tear size or development compared to one of 68 (1.5%) in the control group which had increased in size. Full-thickness rotator cuff tears in siblings are significantly more likely to progress over a period of five years than in a control population. This implies that genetic factors have a role, not only in the development but also in the progression of full-thickness tears of the rotator cuff
    corecore