8,216 research outputs found
Off-fault tensile cracks: A link between geological fault observations, lab experiments, and dynamic rupture models
We examine the local nature of the dynamic stress field in the vicinity of the tip of a semi-infinite sub-Rayleigh (slower than the Rayleigh wave speed, c_R) mode II crack with a velocity-weakening cohesive zone. We constrain the model using results from dynamic photoelastic experiments, in which shear ruptures were nucleated spontaneously in Homalite-100 plates along a bonded, precut, and inclined interface subject to a far-field uniaxial prestress. During the experiments, tensile cracks grew periodically along one side of the shear rupture interface at a roughly constant angle relative to the shear rupture interface. The occurrence and inclination of the tensile cracks are explained by our analytical model. With slight modifications, the model can be scaled to natural faults, providing diagnostic criteria for interpreting velocity, directivity, and static prestress state associated with past earthquakes on exhumed faults. Indirectly, this method also allows one to constrain the velocity-weakening nature of natural ruptures, providing an important link between field geology, laboratory experiments, and seismology
Load fluctuations drive actin network growth
The growth of actin filament networks is a fundamental biological process
that drives a variety of cellular and intracellular motions. During motility,
eukaryotic cells and intracellular pathogens are propelled by actin networks
organized by nucleation-promoting factors, which trigger the formation of
nascent filaments off the side of existing filaments in the network. A Brownian
ratchet (BR) mechanism has been proposed to couple actin polymerization to
cellular movements, whereby thermal motions are rectified by the addition of
actin monomers at the end of growing filaments. Here, by following
actin--propelled microspheres using three--dimensional laser tracking, we find
that beads adhered to the growing network move via an object--fluctuating BR.
Velocity varies with the amplitude of thermal fluctuation and inversely with
viscosity as predicted for a BR. In addition, motion is saltatory with a broad
distribution of step sizes that is correlated in time. These data point to a
model in which thermal fluctuations of the microsphere or entire actin network,
and not individual filaments, govern motility. This conclusion is supported by
Monte Carlo simulations of an adhesion--based BR and suggests an important role
for membrane tension in the control of actin--based cellular protrusions.Comment: To be published in PNA
Evaluation of a present-day climate simulation with a new coupled atmosphere-ocean model GENMOM
We present a new, non-flux corrected AOGCM, GENMOM, that combines the GENESIS version 3 atmospheric GCM (Global Environmental and Ecological Simulation of Interactive Systems) and MOM2 (Modular Ocean Model version 2) nominally at T31 resolution. We evaluate GENMOM by comparison with reanalysis products (e.g., NCEP2) and three models used in the IPCC AR4 assessment. GENMOM produces a global temperature bias of 0.6 °C. Atmospheric features such as the jet stream structure and major semi-permanent sea level pressure centers are well simulated as is the mean planetary-scale wind structure that is needed to produce the correct position of stormtracks. Most ocean surface currents are reproduced except where they are not resolvable at T31 resolution. Overall, GENMOM captures reasonably well the observed gradients and spatial distributions of annual surface temperature and precipitation and the simulations are on par with other AOGCMs. Deficiencies in the GENMOM simulations include a warm bias in the surface temperature over the southern oceans, a split in the ITCZ and weaker-than-observed overturning circulation
PhylOTU: a high-throughput procedure quantifies microbial community diversity and resolves novel taxa from metagenomic data.
Microbial diversity is typically characterized by clustering ribosomal RNA (SSU-rRNA) sequences into operational taxonomic units (OTUs). Targeted sequencing of environmental SSU-rRNA markers via PCR may fail to detect OTUs due to biases in priming and amplification. Analysis of shotgun sequenced environmental DNA, known as metagenomics, avoids amplification bias but generates fragmentary, non-overlapping sequence reads that cannot be clustered by existing OTU-finding methods. To circumvent these limitations, we developed PhylOTU, a computational workflow that identifies OTUs from metagenomic SSU-rRNA sequence data through the use of phylogenetic principles and probabilistic sequence profiles. Using simulated metagenomic data, we quantified the accuracy with which PhylOTU clusters reads into OTUs. Comparisons of PCR and shotgun sequenced SSU-rRNA markers derived from the global open ocean revealed that while PCR libraries identify more OTUs per sequenced residue, metagenomic libraries recover a greater taxonomic diversity of OTUs. In addition, we discover novel species, genera and families in the metagenomic libraries, including OTUs from phyla missed by analysis of PCR sequences. Taken together, these results suggest that PhylOTU enables characterization of part of the biosphere currently hidden from PCR-based surveys of diversity
Structural Polymorphism of the Cytoskeleton: A Model of Linker-Assisted Filament Aggregation
The phase behavior of charged rods in the presence of inter-rod linkers is
studied theoretically as a model for the equilibrium behavior underlying the
organization of actin filaments by linker proteins in the cytoskeleton. The
presence of linkers in the solution modifies the effective inter-rod
interaction and can lead to inter-filament attraction. Depending on the
system's composition and physical properties such as linker binding energies,
filaments will either orient perpendicular or parallel to each other, leading
to network-like or bundled structures. We show that such a system can have one
of three generic phase diagrams, one dominated by bundles, another by networks,
and the third containing both bundle and network-like phases. The first two
diagrams can be found over a wide range of interaction energies, while the
third occurs only for a narrow range. These results provide theoretical
understanding of the classification of linker proteins as bundling proteins or
crosslinking proteins. In addition, they suggest possible mechanisms by which
the cell may control cytoskeletal morphology.Comment: 17 pages, 3 figure
Dynamics of quantum dissipation systems interacting with Fermion and Boson grand canonical bath ensembles: Hierarchical equations of motion approach
A hierarchical equations of motion formalism for a quantum dissipation system
in a grand canonical bath ensemble surrounding is constructed, on the basis of
the calculus-on-path-integral algorithm, together with the parametrization of
arbitrary non-Markovin bath that satisfies fluctuation-dissipation theorem. The
influence functionals for both the Fermion or Boson bath interaction are found
to be of the same path-integral expression as the canonical bath, assuming they
all satisfy the Gaussian statistics. However, the equation of motion formalism
are different, due to the fluctuation-dissipation theories that are distinct
and used explicitly. The implications of the present work to quantum transport
through molecular wires and electron transfer in complex molecular systems are
discussed.Comment: 12page
The Phylogenetic Diversity of Metagenomes
Phylogenetic diversity—patterns of phylogenetic relatedness among organisms in ecological communities—provides important insights into the mechanisms underlying community assembly. Studies that measure phylogenetic diversity in microbial communities have primarily been limited to a single marker gene approach, using the small subunit of the rRNA gene (SSU-rRNA) to quantify phylogenetic relationships among microbial taxa. In this study, we present an approach for inferring phylogenetic relationships among microorganisms based on the random metagenomic sequencing of DNA fragments. To overcome challenges caused by the fragmentary nature of metagenomic data, we leveraged fully sequenced bacterial genomes as a scaffold to enable inference of phylogenetic relationships among metagenomic sequences from multiple phylogenetic marker gene families. The resulting metagenomic phylogeny can be used to quantify the phylogenetic diversity of microbial communities based on metagenomic data sets. We applied this method to understand patterns of microbial phylogenetic diversity and community assembly along an oceanic depth gradient, and compared our findings to previous studies of this gradient using SSU-rRNA gene and metagenomic analyses. Bacterial phylogenetic diversity was highest at intermediate depths beneath the ocean surface, whereas taxonomic diversity (diversity measured by binning sequences into taxonomically similar groups) showed no relationship with depth. Phylogenetic diversity estimates based on the SSU-rRNA gene and the multi-gene metagenomic phylogeny were broadly concordant, suggesting that our approach will be applicable to other metagenomic data sets for which corresponding SSU-rRNA gene sequences are unavailable. Our approach opens up the possibility of using metagenomic data to study microbial diversity in a phylogenetic context
Primary physical education, coaches and continuing professional development
This is an Author's Accepted Manuscript of an article published in Sport, Education and Society, 16(4), 485 - 505, 2011, copyright @ Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/13573322.2011.589645.Physical education (PE) in primary schools has traditionally been taught by qualified primary teachers. More recently, some teaching of PE in primary schools has been undertaken by coaches (mostly football coaches). These coaches hold national governing body awards but do not hold teaching qualifications. Thus, coaches may not be adequately prepared to teach PE in curriculum time. The purpose of this study was to evaluate the perceptions of a group of community-based football coaches working in primary schools for the impact of a Continuing Professional Development (CPD) programme on their ability to undertake ‘specified work’ to cover PE in primary schools. The programme focused on four areas identified as important to enable coaches to cover specified work: short- and medium-term planning, pedagogy, knowledge of the curriculum and reflection. Results showed that for the majority of coaches the CPD programme had made them more aware of the importance of these four areas and had helped to develop their knowledge and ability to put this into practice in covering planning, preparation and assessment time. However, further input is still required to develop coaches’ knowledge and understanding in all four areas, but especially their curriculum knowledge, as well as their ability to put these into practice consistently. These findings are discussed in relation to the implications of employing coaches to cover the teaching of PE in primary schools and, if employed, what CPD coaches need to develop the necessary knowledge, skill and understanding for covering specified work in schools
- …