2,945 research outputs found

    Electroreflectance spectroscopy in self-assembled quantum dots: lens symmetry

    Get PDF
    Modulated electroreflectance spectroscopy ΔR/R\Delta R/R of semiconductor self-assembled quantum dots is investigated. The structure is modeled as dots with lens shape geometry and circular cross section. A microscopic description of the electroreflectance spectrum and optical response in terms of an external electric field (F{\bf F}) and lens geometry have been considered. The field and lens symmetry dependence of all experimental parameters involved in the ΔR/R\Delta R/R spectrum have been considered. Using the effective mass formalism the energies and the electronic states as a function of F{\bf F} and dot parameters are calculated. Also, in the framework of the strongly confined regime general expressions for the excitonic binding energies are reported. Optical selection rules are derived in the cases of the light wave vector perpendicular and parallel to % {\bf F}. Detailed calculation of the Seraphin coefficients and electroreflectance spectrum are performed for the InAs and CdSe nanostructures. Calculations show good agreement with measurements recently performed on CdSe/ZnSe when statistical distribution on size is considered, explaining the main observed characteristic in the electroreflectance spectra

    Dielectric susceptibility of the Coulomb-glass

    Full text link
    We derive a microscopic expression for the dielectric susceptibility χ\chi of a Coulomb glass, which corresponds to the definition used in classical electrodynamics, the derivative of the polarization with respect to the electric field. The fluctuation-dissipation theorem tells us that χ\chi is a function of the thermal fluctuations of the dipole moment of the system. We calculate χ\chi numerically for three-dimensional Coulomb glasses as a function of temperature and frequency

    The Transition State in a Noisy Environment

    Get PDF
    Transition State Theory overestimates reaction rates in solution because conventional dividing surfaces between reagents and products are crossed many times by the same reactive trajectory. We describe a recipe for constructing a time-dependent dividing surface free of such recrossings in the presence of noise. The no-recrossing limit of Transition State Theory thus becomes generally available for the description of reactions in a fluctuating environment

    Heritability and Correlation Estimates of Carcass Data from Angus-Sired Steers

    Get PDF
    Carcass data including Warner-Bratzler shear force, marbling score, hot carcass weight, 12-13th rib fat, and ribeye area from 589 Angus-sired steers in the National Cattlemen’s Beef Association Carcass Merit Project were analyzed to estimate heritabilities and genetic correlations. Genetic parameters were estimated using the sire/maternal-grandsire model with the relationship matrix. The heritabilities for tenderness, marbling, hot carcass weight, ribeye area and rib fat were .25, .29, .79, .59, and .07, respectively

    Non-Markovian Configurational Diffusion and Reaction Coordinates for Protein Folding

    Full text link
    The non-Markovian nature of polymer motions is accounted for in folding kinetics, using frequency-dependent friction. Folding, like many other problems in the physics of disordered systems, involves barrier crossing on a correlated energy landscape. A variational transition state theory (VTST) that reduces to the usual Bryngelson-Wolynes Kramers approach when the non-Markovian aspects are neglected is used to obtain the rate, without making any assumptions regarding the size of the barrier, or the memory time of the friction. The transformation to collective variables dependent on the dynamics of the system allows the theory to address the controversial issue of what are ``good'' reaction coordinates for folding.Comment: 9 pages RevTeX, 3 eps-figures included, submitted to PR

    Semiclassical time evolution of the density matrix and tunneling

    Full text link
    The time dependent density matrix of a system with potential barrier is studied using path integrals. The characterization of the initial state, which is assumed to be restricted to one side of the barrier, and the time evolution of the density matrix lead to a three-fold path integral which is evaluated in the semiclassical limit. The semiclassical trajectories are found to move in the complex coordinate plane and barrier penetration only arises due to fluctuations. Both the form of the semiclassical paths and the relevant fluctuations change significantly as a function of temperature. The semiclassical analysis leads to a detailed picture of barrier penetration in the real time domain and the changeover from thermal activation to quantum tunneling. Deep tunneling is associated with quasi-zero modes in the fluctuation spectrum about the semiclassical orbits in the long time limit. The connection between this real time description of tunneling and the standard imaginary time instanton approach is established. Specific results are given for a double well potential and an Eckart barrier.Comment: 27 pages, 8 figures, to be published in Phys. Rev.

    Geometrical Models of the Phase Space Structures Governing Reaction Dynamics

    Get PDF
    Hamiltonian dynamical systems possessing equilibria of saddleĂ—centreĂ—...Ă—centre{saddle} \times {centre} \times...\times {centre} stability type display \emph{reaction-type dynamics} for energies close to the energy of such equilibria; entrance and exit from certain regions of the phase space is only possible via narrow \emph{bottlenecks} created by the influence of the equilibrium points. In this paper we provide a thorough pedagogical description of the phase space structures that are responsible for controlling transport in these problems. Of central importance is the existence of a \emph{Normally Hyperbolic Invariant Manifold (NHIM)}, whose \emph{stable and unstable manifolds} have sufficient dimensionality to act as separatrices, partitioning energy surfaces into regions of qualitatively distinct behavior. This NHIM forms the natural (dynamical) equator of a (spherical) \emph{dividing surface} which locally divides an energy surface into two components (`reactants' and `products'), one on either side of the bottleneck. This dividing surface has all the desired properties sought for in \emph{transition state theory} where reaction rates are computed from the flux through a dividing surface. In fact, the dividing surface that we construct is crossed exactly once by reactive trajectories, and not crossed by nonreactive trajectories, and related to these properties, minimizes the flux upon variation of the dividing surface. We discuss three presentations of the energy surface and the phase space structures contained in it for 2-degree-of-freedom (DoF) systems in the threedimensional space R3\R^3, and two schematic models which capture many of the essential features of the dynamics for nn-DoF systems. In addition, we elucidate the structure of the NHIM.Comment: 44 pages, 38 figures, PDFLaTe

    Coherent State Path Integrals in the Weyl Representation

    Get PDF
    We construct a representation of the coherent state path integral using the Weyl symbol of the Hamiltonian operator. This representation is very different from the usual path integral forms suggested by Klauder and Skagerstan in \cite{Klau85}, which involve the normal or the antinormal ordering of the Hamiltonian. These different representations, although equivalent quantum mechanically, lead to different semiclassical limits. We show that the semiclassical limit of the coherent state propagator in Weyl representation is involves classical trajectories that are independent on the coherent states width. This propagator is also free from the phase corrections found in \cite{Bar01} for the two Klauder forms and provides an explicit connection between the Wigner and the Husimi representations of the evolution operator.Comment: 23 page
    • …
    corecore