9,683 research outputs found
Diurnal variations in optical depth at Mars: Observations and interpretations
Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Optical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combining these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday
Factors governing water condensation in the Martian atmosphere
Modeling results are presented suggesting a diurnal condensation cycle at high altitudes at some seasons and latitudes. In a previous paper, the use of atmospheric optical depth measurements at the Viking lander site to show diurnal variability of water condensation at different seasons of the Mars year was described. Factors influencing the amount of condensation include latitude, season, atmospheric dust content and water vapor content at the observation site. A one-dimensional radiative-convective model is used herein based on the diabatic heating routines under development for the Mars General Circulation Model. The model predicts atmospheric temperature profiles at any latitude, season, time of day and dust load. From these profiles and an estimate of the water vapor, one can estimate the maximum occurring at an early morning hour (AM) and the minimum in the late afternoon (PM). Measured variations in the atmospheric optical density between AM and PM measurements were interpreted as differences in AM and PM condensation
The case for a wet, warm climate on early Mars
Arguments are presented in support of the idea that Mars possessed a dense CO2 atmosphere and a wet, warm climate early in its history. The plausibility of a CO2 greenhouse is tested by formulating a simple model of the CO2 geochemical cycle on early Mars. By scaling the rate of silicate weathering on Earth, researchers estimated a weathering time constant of the order of several times 10 to the 7th power years for early Mars. Thus, a dense atmosphere could have existed for a geologically significant time period (approx. 10 to the 9th power years) only if atmospheric CO2 was being continuously resupplied. The most likely mechanism by which this could have been accomplished is the thermal decomposition of carbonate rocks induced directly or indirectly by intense, global scale volcanism
Inhomogeneous models of the Venus clouds containing sulfur
Based on the suggestion that elemental sulfur is responsible for the yellow color of Venus, calculations are compared at 3.4 microns of the reflectivity phase function of two sulfur containing inhomogeneous cloud models with that of a homogeneous model. Assuming reflectivity observations with 25% or less total error, comparison of the model calculations leads to a minimum detectable mass of sulfur equal to 7% of the mass of sulfuric acid for the inhomogeneous drop model. For the inhomogeneous cloud model the comparison leads to a minimum detectable mass of sulfur between 17% and 38% of the mass of the acid drops, depending upon the actual size of the large particles. It is concluded that moderately accurate 3.4 microns reflectivity observations are capable of detecting quite small amounts of elemental sulfur at the top of the Venus clouds
Proceedings of the MECA Workshop on The Evoluation of the Martian Atmosphere
Topics addressed include: Mars' volatile budget; climatic implications of martian channels; bulk composition of Mars; accreted water inventory; evolution of CO2; dust storms; nonlinear frost albedo feedback on Mars; martian atmospheric evolution; effects of asteroidal and cometary impacts; and water exchange between the regolith and the atmosphere/cap system over obliquity timescales
Nonlocal multi-trace sources and bulk entanglement in holographic conformal field theories
We consider CFT states defined by adding nonlocal multi-trace sources to the
Euclidean path integral defining the vacuum state. For holographic theories, we
argue that these states correspond to states in the gravitational theory with a
good semiclassical description but with a more general structure of bulk
entanglement than states defined from single-trace sources. We show that at
leading order in large N, the entanglement entropies for any such state are
precisely the same as those of another state defined by appropriate
single-trace effective sources; thus, if the leading order entanglement
entropies are geometrical for the single-trace states of a CFT, they are
geometrical for all the multi-trace states as well. Next, we consider the
perturbative calculation of 1/N corrections to the CFT entanglement entropies,
demonstrating that these show qualitatively different features, including
non-analyticity in the sources and/or divergences in the naive perturbative
expansion. These features are consistent with the expectation that the 1/N
corrections include contributions from bulk entanglement on the gravity side.
Finally, we investigate the dynamical constraints on the bulk geometry and the
quantum state of the bulk fields which must be satisfied so that the entropies
can be reproduced via the quantum-corrected Ryu-Takayanagi formula.Comment: 60 pages + appendices, 7 figures; v2: minor additions, published
versio
Charge Management for Gravitational Wave Observatories using UV LEDs
Accumulation of electrical charge on the end mirrors of gravitational wave
observatories, such as the space-based LISA mission and ground-based LIGO
detectors, can become a source of noise limiting the sensitivity of such
detectors through electronic couplings to nearby surfaces. Torsion balances
provide an ideal means for testing gravitational wave technologies due to their
high sensitivity to small forces. Our torsion pendulum apparatus consists of a
movable Au-coated Cu plate brought near a Au-coated Si plate pendulum suspended
from a non-conducting quartz fiber. A UV LED located near the pendulum
photoejects electrons from the surface, and a UV LED driven electron gun
directs photoelectrons towards the pendulum surface. We have demonstrated both
charging and discharging of the pendulum with equivalent charging rates of
, as well as spectral measurements of the pendulum
charge resulting in a white noise level equivalent to .Comment: 5 pages, submitted to PR
High Sensitivity Torsion Balance Tests for LISA Proof Mass Modeling
We have built a highly sensitive torsion balance to investigate small forces
between closely spaced gold coated surfaces. Such forces will occur between the
LISA proof mass and its housing. These forces are not well understood and
experimental investigations are imperative. We describe our torsion balance and
present the noise of the system. A significant contribution to the LISA noise
budget at low frequencies is the fluctuation in the surface potential
difference between the proof mass and its housing. We present first results of
these measurements with our apparatus.Comment: 6th International LISA Symposiu
Recommended from our members
Detection of human influence on a new, validated 1500-Year temperature reconstruction
Climate records over the last millennium place the twentieth-century warming in a longer historical context. Reconstructions of millennial temperatures show a wide range of variability, raising questions about the reliability of currently available reconstruction techniques and the uniqueness of late-twentieth-century warming. A calibration method is suggested that avoids the loss of low-frequency variance. A new reconstruction using this method shows substantial variability over the last 1500 yr. This record is consistent with independent temperature change estimates from borehole geothermal records, compared over the same spatial and temporal domain. The record is also broadly consistent with other recent reconstructions that attempt to fully recover low-frequency climate variability in their central estimate. High variability in reconstructions does not hamper the detection of greenhouse gas-induced climate change, since a substantial fraction of the variance in these reconstructions from the beginning of the analysis in the late thirteenth century to the end of the records can be attributed to external forcing. Results from a detection and attribution analysis show that greenhouse warming is detectable in all analyzed high-variance reconstructions (with the possible exception of one ending in 1925), and that about a third of the warming in the first half of the twentieth century can be attributed to anthropogenic greenhouse gas emissions. The estimated magnitude of the anthropogenic signal is consistent with most of the warming in the second half of the twentieth century being anthropogenic
- …